Two Centuries Before The Sixth Seal (Revelation 6:12)

Image result for 1755 massachusetts earthquake

The worst earthquake in Massachusetts history 260 years ago

It happened before, and it could happen again.

By Hilary Sargent @lilsarg

Boston.com Staff | 11.19.15 | 5:53 AM

On November 18, 1755, Massachusetts experienced its largest recorded earthquake.

The earthquake occurred in the waters off Cape Ann, and was felt within seconds in Boston, and as far away as Nova Scotia, the Chesapeake Bay, and upstate New York, according to the U.S. Geological Survey.

Seismologists have since estimated the quake to have been between 6.0 and 6.3 on the Richter scale, according to the Massachusetts Historical Society.

While there were no fatalities, the damage was extensive.

According to the USGS, approximately 100 chimneys and roofs collapsed, and over a thousand were damaged.

The worst damage occurred north of Boston, but the city was not unscathed.

A 1755 report in The Philadelphia Gazette described the quake’s impact on Boston:

“There was at first a rumbling noise like low thunder, which was immediately followed with such a violent shaking of the earth and buildings, as threw every into the greatest amazement, expecting every moment to be buried in the ruins of their houses. In a word, the instances of damage done to our houses and chimnies are so many, that it would be endless to recount them.”

The quake sent the grasshopper weathervane atop Faneuil Hall tumbling to the ground, according to the Massachusetts Historical Society.

An account of the earthquake, published in The Pennsylvania Gazette on December 4, 1755.

The earthquake struck at 4:30 in the morning, and the shaking lasted “near four minutes,” according to an entry John Adams, then 20, wrote in his diary that day.

The brief diary entry described the damage he witnessed.

“I was then at my Fathers in Braintree, and awoke out of my sleep in the midst of it,” he wrote. “The house seemed to rock and reel and crack as if it would fall in ruins about us. 7 Chimnies were shatter’d by it within one mile of my Fathers house.”

The shaking was so intense that the crew of one ship off the Boston coast became convinced the vessel had run aground, and did not learn about the earthquake until they reached land, according to the Massachusetts Historical Society.

In 1832, a writer for the Hampshire (Northampton) Gazette wrote about one woman’s memories from the quake upon her death.

“It was between 4 and 5 in the morning, and the moon shone brightly. She and the rest of the family were suddenly awaked from sleep by a noise like that of the trampling of many horses; the house trembled and the pewter rattled on the shelves. They all sprang out of bed, and the affrightted children clung to their parents. “I cannot help you dear children,” said the good mother, “we must look to God for help.

The Cape Ann earthquake came just 17 days after an earthquake estimated to have been 8.5-9.0 on the Richter scale struck in Lisbon, Portugal, killing at least 60,000 and causing untold damage.

There was no shortage of people sure they knew the impretus for the Cape Ann earthquake.

According to many ministers in and around Boston, “God’s wrath had brought this earthquake upon Boston,” according to the Massachusetts Historical Society.

In “Verses Occasioned by the Earthquakes in the Month of November, 1755,” Jeremiah Newland, a Taunton resident who was active in religious activities in the Colony, wrote that the earthquake was a reminder of the importance of obedience to God.

“It is becaufe we broke thy Laws,

that thou didst shake the Earth.

O what a Day the Scriptures say,

the EARTHQUAKE doth foretell;

O turn to God; lest by his Rod,

he cast thee down to Hell.”

Boston Pastor Jonathan Mayhew warned in a sermon that the 1755 earthquakes in Massachusetts and Portugal were “judgments of heaven, at least as intimations of God’s righteous displeasure, and warnings from him.”

There were some, though, who attempted to put forth a scientific explanation for the earthquake.

Well, sort of.

In a lecture delivered just a week after the earthquake, Harvard mathematics professor John Winthrop said the quake was the result of a reaction between “vapors” and “the heat within the bowels of the earth.” But even Winthrop made sure to state that his scientific theory “does not in the least detract from the majesty … of God.”

It has been 260 years since the Cape Ann earthquake. Some experts, including Boston College seismologist John Ebel, think New England could be due for another significant quake.

In a recent Boston Globe report, Ebel said the New England region “can expect a 4 to 5 magnitude quake every decade, a 5 to 6 every century, and a magnitude 6 or above every thousand years.”

If the Cape Ann earthquake occurred today, “the City of Boston could sustain billions of dollars of earthquake damage, with many thousands injured or killed,” according to a 1997 study by the US Army Corps of Engineers.

Why New York City Will Be Shut Down At The Sixth Seal

Indian Point tritium leak 80% worse than originally reported

Published time: 10 Feb, 2016 22:12Edited time: 11 Feb, 2016 01:51

New measurements at the Indian Point nuclear power plant in upstate New York show levels of radioactive tritium 80 percent higher than reported last week. Plant operator insists the spill is not dangerous, as state officials call for a safety probe.

Entergy, which operates the facility 25 miles (40 km) north of New York City, says the increased levels of tritium represent “fluctuations that can be expected as the material migrates.”

“Even with the new readings, there is no impact to public health or safety, and although these values remain less than one-tenth of one percent of federal reporting guidelines,” Entergy said in a statement.

New York governor Andrew Cuomo raised an alarm last Saturday over the reports of groundwater contamination at Indian Point, noting that the company reported “alarming levels of radioactivity” at three monitoring wells, with “radioactivity increasing nearly 65,000 percent” at one of them.

The groundwater wells have no contact with any drinking water supplies, and the spill will dissipate before it reaches the Hudson River, a senior Entergy executive argued Tuesday, suggesting the increased state scrutiny was driven by the company’s decision to shut down another nuclear power plant.

“There are a number of stakeholders, including the governor, who do not like the fact that we are having to close Fitzpatrick,” Michael Twomey, Entergy’s vice president of external affairs, said during an appearance on ‘The Capitol Pressroom,’ a show on WCNY public radio.

The James A. Fitzpatrick plant is located on the southern shore of Lake Ontario, near Oswego, New York. Entergy said it intended to close the plant once it runs out of fuel sometime this year, citing its continued operations as unprofitable.

Indian Point Nuclear Power Plant on the Hudson river © wikipedia.org

‘65,000% radioactivity spike’: New York Gov. orders probe into water leak at Indian Point

“We’re not satisfied with this event. This was not up to our expectations,” Twomey said, adding that the Indian Point spill should be seen in context.

Though it has never reported a reactor problem, the Indian Point facility has been plagued by issues with transformers, cooling systems, and other electrical components over the years. It currently operates two reactors, both brought on-line in the 1970s.

In December, the federal Nuclear Regulatory Commission allowed Entergy to continue operating the reactors, pending license renewal. The facility’s initial 40-year license was set to expire on December 12, but the regulators are reportedly leaning towards recommending a 20-year extension.

By contrast, Reactor 4 at the Chernobyl Nuclear Power Plant in Pripyat, Ukraine was only three years old when it exploded in April 1986. To this day, an area of 1000 square miles around the power plant remains the “exclusion zone,” where human habitation is prohibited.

The tritium leak at Indian Point most likely took place in January, during the preparations to shut down Reactor 2 for refueling, according to Entergy. Water containing high levels of the hydrogen isotope reportedly overfilled the drains and spilled into the ground.

According to Entergy, tritium is a “low hazard radionuclide” because it emits low-energy beta particles, which do not penetrate the skin. “People could be harmed by tritium only through internal exposure caused by drinking water with high levels of tritium over many years,” an Entergy fact sheet says.

Environmentalist critics are not convinced, however.

“This plant isn’t safe anymore,” Paul Gallay, president of environmental watchdog group

Riverkeeper, told the New York Daily News. “Everybody knows it and only Entergy and the Nuclear Regulatory Commission refuse to admit it.”

The Sixth Seal Is Long Overdue (Revelation 6:12)

ON THE MAP; Exploring the Fault Where the Next Big One May Be Waiting

By MARGO NASH

Published: March 25, 2001

Alexander Gates, a geology professor at Rutgers-Newark, is co-author of ”The Encyclopedia of Earthquakes and Volcanoes,” which will be published by Facts on File in July. He has been leading a four-year effort to remap an area known as the Sloatsburg Quadrangle, a 5-by-7-mile tract near Mahwah that crosses into New York State. The Ramapo Fault, which runs through it, was responsible for a big earthquake in 1884, and Dr. Gates warns that a recurrence is overdue. He recently talked about his findings.

Q. What have you found?

A. We’re basically looking at a lot more rock, and we’re looking at the fracturing and jointing in the bedrock and putting it on the maps. Any break in the rock is a fracture. If it has movement, then it’s a fault. There are a lot of faults that are offshoots of the Ramapo. Basically when there are faults, it means you had an earthquake that made it. So there was a lot of earthquake activity to produce these features. We are basically not in a period of earthquake activity along the Ramapo Fault now, but we can see that about six or seven times in history, about 250 million years ago, it had major earthquake activity. And because it’s such a fundamental zone of weakness, anytime anything happens, the Ramapo Fault goes.

Q. Where is the Ramapo Fault?

A. The fault line is in western New Jersey and goes through a good chunk of the state, all the way down to Flemington. It goes right along where they put in the new 287. It continues northeast across the Hudson River right under the Indian Point power plant up into Westchester County. There are a lot of earthquakes rumbling around it every year, but not a big one for a while.

Q. Did you find anything that surprised you?

A. I found a lot of faults, splays that offshoot from the Ramapo that go 5 to 10 miles away from the fault. I have looked at the Ramapo Fault in other places too. I have seen splays 5 to 10 miles up into the Hudson Highlands. And you can see them right along the roadsides on 287. There’s been a lot of damage to those rocks, and obviously it was produced by fault activities. All of these faults have earthquake potential.

Q. Describe the 1884 earthquake.

A. It was in the northern part of the state near the Sloatsburg area. They didn’t have precise ways of describing the location then. There was lots of damage. Chimneys toppled over. But in 1884, it was a farming community, and there were not many people to be injured. Nobody appears to have written an account of the numbers who were injured.

Q. What lessons we can learn from previous earthquakes?

A. In 1960, the city of Agadir in Morocco had a 6.2 earthquake that killed 12,000 people, a third of the population, and injured a third more. I think it was because the city was unprepared.There had been an earthquake in the area 200 years before. But people discounted the possibility of a recurrence. Here in New Jersey, we should not make the same mistake. We should not forget that we had a 5.4 earthquake 117 years ago. The recurrence interval for an earthquake of that magnitude is every 50 years, and we are overdue. The Agadir was a 6.2, and a 5.4 to a 6.2 isn’t that big a jump.

Q. What are the dangers of a quake that size?

A. When you’re in a flat area in a wooden house it’s obviously not as dangerous, although it could cut off a gas line that could explode. There’s a real problem with infrastructure that is crumbling, like the bridges with crumbling cement. There’s a real danger we could wind up with our water supplies and electricity cut off if a sizable earthquake goes off. The best thing is to have regular upkeep and keep up new building codes. The new buildings will be O.K. But there is a sense of complacency.

MARGO NASH

Authorities Expecting The Sixth Seal? (Rev 6:12)

US Raises Threat of Quake but Lowers Risk for Towers

New York Times

By SAM ROBERTS

JULY 17, 2014

Here is another reason to buy a mega-million-dollar apartment in a Manhattan high-rise: Earthquake forecast maps for New York City that a federal agency issued on Thursday indicate “a slightly lower hazard for tall buildings than previously thought.”

The agency, the United States Geodetic Survey, tempered its latest quake prediction with a big caveat.

“The eastern U.S. has the potential for larger and more damaging earthquakes than considered in previous maps and assessments,” the agency said, citing the magnitude 5.8 quake that struck Virginia in 2011.

Federal seismologists based their projections of a lower hazard for tall buildings — “but still a hazard nonetheless,” they cautioned — on a lower likelihood of slow shaking from an earthquake occurring near the city, the type of shaking that typically causes more damage to taller structures.

“The tall buildings in Manhattan are not where you should be focusing,” said John Armbruster, a seismologist with the Lamont-Doherty Earth Observatory of Columbia University. “They resonate with long period waves. They are designed and engineered to ride out an earthquake. Where you should really be worried in New York City is the common brownstone and apartment building and buildings that are poorly maintained.”

Mr. Armbruster was not involved in the federal forecast, but was an author of an earlier study that suggested that “a pattern of subtle but active faults makes the risk of earthquakes to the New York City area substantially greater than formerly believed.”

He noted that barely a day goes by without a New York City building’s being declared unsafe, without an earthquake. “If you had 30, 40, 50 at one time, responders would be overloaded,” he said.

The city does have an earthquake building code that went into effect in 1996, and that applies primarily to new construction.

A well-maintained building would probably survive a magnitude 5 earthquake fairly well, he said. The last magnitude 5 earthquake in the city struck in 1884. Another is not necessarily inevitable; faults are more random and move more slowly than they do in, say, California. But he said the latest federal estimate was probably raised because of the magnitude of the Virginia quake.

“Could there be a magnitude 6 in New York?” Mr. Armbruster said. “In Virginia, in a 300 year history, 4.8 was the biggest, and then you have a 5.8. So in New York, I wouldn’t say a 6 is impossible.”

Mr. Armbruster said the Geodetic Survey forecast would not affect his daily lifestyle. “I live in a wood-frame building with a brick chimney and I’m not alarmed sitting up at night worried about it,” he said. “But society’s leaders need to take some responsibility.”

The Sixth Seal: A Stack of Cards (Revelation 6:12)

Experts Warn NYC Could Fall Like ‚House of Cards‘ With 5.0 Earthquake

A 3-D rendering of a destroyed NYC. (Pavel Chagochkin/Dreamstime.com)

By Mike Dorstewitz    |   Wednesday, 04 April 2018 06:30 PM

A magnitude-5.0 earthquake in New York City would cause an estimated $39 billion in damage after buildings topple like a „house of cards,“ according to the Daily Mail.

And the city is overdue for a quake of that size, seismologists say. The last one was in 1884 and they occur about every 100 years.

An estimated 30 million tons of debris would litter the streets after a 5.0 earthquake in NYC , and anything bigger than that would almost certainly collapse buildings and cause loss of life to the city’s 8.5 million residents.

„The problem here comes from many subtle faults,“ said Lynn Skyes, lead author of a study by seismologists at Columbia University’s Lamont-Doherty Earth Observatory, the New York Daily News reported. „We now see there is earthquake activity on them. Each one is small, but when you add them up, they are probably more dangerous than we thought.“

New York City is riddled with fault lines. The largest runs down 125th Street, extending from New Jersey to the East River. The Dyckman Street Fault runs from Inwood to Morris Heights in the Bronx. The Mosholu Parkway Fault line runs a bit farther north. The East River Fault is an especially long one, running south, skirting Central Park’s west side then heading to the East River when it hits 32nd Street.

New York’s main problem isn’t the magnitude of earthquakes, it’s how the city is built.

„Considering population density and the condition of the region’s infrastructure and building stock, it is clear that even a moderate earthquake would have considerable consequences in terms of public safety and economic impact,“ New York City Area Consortium for Earthquake Loss Mitigation wrote on its website.

Sixth Seal: New York City (Revelation 6:12)

(Source: US Geological Survey)

New York State Geological Survey

Damaging earthquakes have occurred in New York and surely will again. The likelihood of a damaging earthquake in New York is small overall but the possibility is higher in the northern part of the state and in the New York City region.Significant earthquakes, both located in Rockaway and larger than magnitude 5, shook New York City in 1737 and 1884. The quakes were 147 years apart and the most recent was 122 year ago. It is likely that another earthquake of the same size will occur in that area in the next 25 to 50 years. A magnitude 5.8 earthquake in New York City would probably not cause great loss of life. However the damage to infrastructure – buildings, steam and gas lines, water mains, electric and fiber optic cable – could be extensive.

Earthquake Hazard Map of New York State

Acceleration of the ground during an earthquake is more important than total movement in causing structural damage. This map shows the two-percent probability of the occurrence of an earthquake that exceeds the acceleration of earth’s gravity by a certain percentage in the next fifty years.

If a person stands on a rug and the rug pulled slowly, the person will maintain balance and will not fall. But if the rug is jerked quickly, the person will topple. The same principle is true for building damage during an earthquake. Structural damage is caused more by the acceleration of the ground than by the distance the ground moves.

Earthquake hazard maps show the probability that the ground will move at a certain rate, measured as a percentage of earth’s gravity, during a particular time. Motion of one or two percent of gravity will rattle windows, doors, and dishes. Acceleration of ten to twenty percent of gravity will cause structural damage to buildings. It takes more than one hundred percent of gravity to throw objects into the air.

The Sixth Seal Long Overdue (Revelation 6)

ON THE MAP; Exploring the Fault Where the Next Big One May Be Waiting

The Big One Awaits

By MARGO NASH

Published: March 25, 2001

Alexander Gates, a geology professor at Rutgers-Newark, is co-author of “The Encyclopedia of Earthquakes and Volcanoes,“ which will be published by Facts on File in July. He has been leading a four-year effort to remap an area known as the Sloatsburg Quadrangle, a 5-by-7-mile tract near Mahwah that crosses into New York State. The Ramapo Fault, which runs through it, was responsible for a big earthquake in 1884, and Dr. Gates warns that a recurrence is overdue. He recently talked about his findings.

Q. What have you found?

A. We’re basically looking at a lot more rock, and we’re looking at the fracturing and jointing in the bedrock and putting it on the maps. Any break in the rock is a fracture. If it has movement, then it’s a fault. There are a lot of faults that are offshoots of the Ramapo. Basically when there are faults, it means you had an earthquake that made it. So there was a lot of earthquake activity to produce these features. We are basically not in a period of earthquake activity along the Ramapo Fault now, but we can see that about six or seven times in history, about 250 million years ago, it had major earthquake activity. And because it’s such a fundamental zone of weakness, anytime anything happens, the Ramapo Fault goes.

Q. Where is the Ramapo Fault?

A. The fault line is in western New Jersey and goes through a good chunk of the state, all the way down to Flemington. It goes right along where they put in the new 287. It continues northeast across the Hudson River right under the Indian Point power plant up into Westchester County. There are a lot of earthquakes rumbling around it every year, but not a big one for a while.

Q. Did you find anything that surprised you?

A. I found a lot of faults, splays that offshoot from the Ramapo that go 5 to 10 miles away from the fault. I have looked at the Ramapo Fault in other places too. I have seen splays 5 to 10 miles up into the Hudson Highlands. And you can see them right along the roadsides on 287. There’s been a lot of damage to those rocks, and obviously it was produced by fault activities. All of these faults have earthquake potential.

Q. Describe the 1884 earthquake.

A. It was in the northern part of the state near the Sloatsburg area. They didn’t have precise ways of describing the location then. There was lots of damage. Chimneys toppled over. But in 1884, it was a farming community, and there were not many people to be injured. Nobody appears to have written an account of the numbers who were injured.

Q. What lessons we can learn from previous earthquakes?

A. In 1960, the city of Agadir in Morocco had a 6.2 earthquake that killed 12,000 people, a third of the population, and injured a third more. I think it was because the city was unprepared.There had been an earthquake in the area 200 years before. But people discounted the possibility of a recurrence. Here in New Jersey, we should not make the same mistake. We should not forget that we had a 5.4 earthquake 117 years ago. The recurrence interval for an earthquake of that magnitude is every 50 years, and we are overdue. The Agadir was a 6.2, and a 5.4 to a 6.2 isn’t that big a jump.

Q. What are the dangers of a quake that size?

A. When you’re in a flat area in a wooden house it’s obviously not as dangerous, although it could cut off a gas line that could explode. There’s a real problem with infrastructure that is crumbling, like the bridges with crumbling cement. There’s a real danger we could wind up with our water supplies and electricity cut off if a sizable earthquake goes off. The best thing is to have regular upkeep and keep up new building codes. The new buildings will be O.K. But there is a sense of complacency.

MARGO NASH

Photo: Alexander Gates, a Rutgers geologist, is mapping a part of the Ramapo Fault, site of previous earthquakes. (John W. Wheeler for The New York Times)

The Sixth Seal Will be in New York (Rev 6:12)

By Simon Worrall

PUBLISHED AUGUST 26, 2017

Half a million earthquakes occur worldwide each year, according to an estimate by the U.S. Geological Survey (USGS). Most are too small to rattle your teacup. But some, like the 2011 quake off the coast of Japan or last year’s disaster in Italy, can level high-rise buildings, knock out power, water and communications, and leave a lifelong legacy of trauma for those unlucky enough to be caught in them.

In the U.S., the focus is on California’s San Andreas fault, which geologists suggest has a nearly one-in-five chance of causing a major earthquake in the next three decades. But it’s not just the faults we know about that should concern us, says Kathryn Miles, author of Quakeland: On the Road to America’s Next Devastating Earthquake. As she explained when National Geographic caught up with her at her home in Portland, Maine, there’s a much larger number of faults we don’t know about—and fracking is only adding to the risks.

When it comes to earthquakes, there is really only one question everyone wants to know: When will the big one hit California?

That’s the question seismologists wish they could answer, too! One of the most shocking and surprising things for me is just how little is actually known about this natural phenomenon. The geophysicists, seismologists, and emergency managers that I spoke with are the first to say, “We just don’t know!”

What we can say is that it is relatively certain that a major earthquake will happen in California in our lifetime. We don’t know where or when. An earthquake happening east of San Diego out in the desert is going to have hugely different effects than that same earthquake happening in, say, Los Angeles. They’re both possible, both likely, but we just don’t know.

One of the things that’s important to understand about San Andreas is that it’s a fault zone. As laypeople we tend to think about it as this single crack that runs through California and if it cracks enough it’s going to dump the state into the ocean. But that’s not what’s happening here. San Andreas is a huge fault zone, which goes through very different types of geological features. As a result, very different types of earthquakes can happen in different places.

As Charles Richter, inventor of the Richter Scale, famously said, “Only fools, liars and charlatans predict earthquakes.” Why are earthquakes so hard to predict? After all, we have sent rockets into space and plumbed the depths of the ocean.

You’re right: We know far more about distant galaxies than we do about the inner workings of our planet. The problem is that seismologists can’t study an earthquake because they don’t know when or where it’s going to happen. It could happen six miles underground or six miles under the ocean, in which case they can’t even witness it. They can go back and do forensic, post-mortem work. But we still don’t know where most faults lie. We only know where a fault is after an earthquake has occurred. If you look at the last 100 years of major earthquakes in the U.S., they’ve all happened on faults we didn’t even know existed.

Earthquakes 101

Earthquakes are unpredictable and can strike with enough force to bring buildings down. Find out what causes earthquakes, why they’re so deadly, and what’s being done to help buildings sustain their hits.

Fracking is a relatively new industry. Many people believe that it can cause what are known as induced earthquakes. What’s the scientific consensus?

The scientific consensus is that a practice known as wastewater injection undeniably causes earthquakes when the geological features are conducive. In the fracking process, water and lubricants are injected into the earth to split open the rock, so oil and natural gas can be retrieved. As this happens, wastewater is also retrieved and brought back to the surface.

You Might Also Like

Different states deal with this in different ways. Some states, like Pennsylvania, favor letting the wastewater settle in aboveground pools, which can cause run-off contamination of drinking supplies. Other states, like Oklahoma, have chosen to re-inject the water into the ground. And what we’re seeing in Oklahoma is that this injection is enough to shift the pressure inside the earth’s core, so that daily earthquakes are happening in communities like Stillwater. As our technology improves, and both our ability and need to extract more resources from the earth increases, our risk of causing earthquakes will also rise exponentially.

After Fukushima, the idea of storing nuclear waste underground cannot be guaranteed to be safe. Yet President Trump has recently green-lighted new funds for the Yucca Mountain site in Nevada. Is that wise?

The issue with Fukushima was not about underground nuclear storage but it is relevant. The Tohoku earthquake, off the coast of Japan, was a massive, 9.0 earthquake—so big that it shifted the axis of the earth and moved the entire island of Japan some eight centimeters! It also created a series of tsunamis, which swamped the Fukushima nuclear power plant to a degree the designers did not believe was possible.

Here in the U.S., we have nuclear plants that are also potentially vulnerable to earthquakes and tsunamis, above all on the East Coast, like Pilgrim Nuclear, south of Boston, or Indian Point, north of New York City. Both of these have been deemed by the USGS to have an unacceptable level of seismic risk. [Both are scheduled to close in the next few years.]

Yucca Mountain is meant to address our need to store the huge amounts of nuclear waste that have been accumulating for more than 40 years. Problem number one is getting it out of these plants. We are going to have to somehow truck or train these spent fuel rods from, say, Boston, to a place like Yucca Mountain, in Nevada. On the way it will have to go through multiple earthquake zones, including New Madrid, which is widely considered to be one of the country’s most dangerous earthquake zones.

Yucca Mountain itself has had seismic activity. Ultimately, there’s no great place to put nuclear waste—and there’s no guarantee that where we do put it is going to be safe.

The psychological and emotional effects of an earthquake are especially harrowing. Why is that?

This is a fascinating and newly emerging subfield within psychology, which looks at the effects of natural disasters on both our individual and collective psyches. Whenever you experience significant trauma, you’re going to see a huge increase in PTSD, anxiety, depression, suicide, and even violent behaviors.

What seems to make earthquakes particularly pernicious is the surprise factor. A tornado will usually give people a few minutes, if not longer, to prepare; same thing with hurricanes. But that doesn’t happen with an earthquake. There is nothing but profound surprise. And the idea that the bedrock we walk and sleep upon can somehow become liquid and mobile seems to be really difficult for us to get our heads around.

Psychologists think that there are two things happening. One is a PTSD-type loop where our brain replays the trauma again and again, manifesting itself in dreams or panic attacks during the day. But there also appears to be a physiological effect as well as a psychological one. If your readers have ever been at sea for some time and then get off the ship and try to walk on dry land, they know they will look like drunkards. [Laughs] The reason for this is that the inner ear has habituated itself to the motion of the ship. We think the inner ear does something similar in the case of earthquakes, in an attempt to make sense of this strange, jarring movement.

After the Abruzzo quake in Italy, seven seismologists were actually tried and sentenced to six years in jail for failing to predict the disaster. Wouldn’t a similar threat help improve the prediction skills of American seismologists?

[Laughs] The scientific community was uniform in denouncing that action by the Italian government because, right now, earthquakes are impossible to predict. But the question of culpability is an important one. To what degree do we want to hold anyone responsible? Do we want to hold the local meteorologist responsible if he gets the weather forecast wrong? [Laughs]

What scientists say—and I don’t think this is a dodge on their parts—is, “Predicting earthquakes is the Holy Grail; it’s not going to happen in our lifetime. It may never happen.” What we can do is work on early warning systems, where we can at least give people 30 or 90 seconds to make a few quick decisive moves that could well save your life. We have failed to do that. But Mexico has had one in place for years!

There is some evidence that animals can predict earthquakes. Is there any truth to these theories?

All we know right now is anecdotal information because this is so hard to test for. We don’t know where the next earthquake is going to be so we can’t necessarily set up cameras and observe the animals there. So we have to rely on these anecdotal reports, say, of reptiles coming out of the ground prior to a quake. The one thing that was recorded here in the U.S. recently was that in the seconds before an earthquake in Oklahoma huge flocks of birds took flight. Was that coincidence? Related? We can’t draw that correlation yet.

One of the fascinating new approaches to prediction is the MyQuake app. Tell us how it works—and why it could be an especially good solution for Third World countries.

The USGS desperately wants to have it funded. The reluctance appears to be from Congress. A consortium of universities, in conjunction with the USGS, has been working on some fascinating tools. One is a dense network of seismographs that feed into a mainframe computer, which can take all the information and within nanoseconds understand that an earthquake is starting.

MyQuake is an app where you can get up to date information on what’s happening around the world. What’s fascinating is that our phones can also serve as seismographs. The same technology that knows which way your phone is facing, and whether it should show us an image in portrait or landscape, registers other kinds of movement. Scientists at UC Berkeley are looking to see if they can crowd source that information so that in places where we don’t have a lot of seismographs or measuring instruments, like New York City or Chicago or developing countries like Nepal, we can use smart phones both to record quakes and to send out early warning notices to people.

You traveled all over the U.S. for your research. Did you return home feeling safer?

I do not feel safer in the sense that I had no idea just how much risk regions of this country face on a daily basis when it comes to seismic hazards. We tend to think of this as a West Coast problem but it’s not! It’s a New York, Memphis, Seattle, or Phoenix problem. Nearly every major urban center in this country is at risk of a measurable earthquake.

What I do feel safer about is knowing what I can do as an individual. I hope that is a major take-home message for people who read the book. There are so many things we should be doing as individuals, family members, or communities to minimize this risk: simple things from having a go-bag and an emergency plan amongst the family to larger things like building codes.

We know that a major earthquake is going to happen. It’s probably going to knock out our communications lines. Phones aren’t going to work, Wi-Fi is going to go down, first responders are not going to be able to get to people for quite some time. So it is beholden on all of us to make sure we can survive until help can get to us.

This interview was edited for length and clarity.

History Warns New York Is The Sixth Seal (Revelation 6:12)

New York Earthquake 1884

Friday, 18 March 2011 – 9:23pm IST | Place: NEW YORK | Agency: ANI

If the past is any indication, New York can be hit by an earthquake, claims John Armbruster, a seismologist at Columbia University’s Lamont-Doherty Earth Observatory.

If the past is any indication, New York can be hit by an earthquake, claims John Armbruster, a seismologist at Columbia University’s Lamont-Doherty Earth Observatory.Based on historical precedent, Armbruster says the New York City metro area is susceptible to an earthquake of at least a magnitude of 5.0 once a century.According to the New York Daily News, Lynn Skyes, lead author of a recent study by seismologists at the Lamont-Doherty Earth Observatory adds that a magnitude-6 quake hits the area about every 670 years, and magnitude-7 every 3,400 years.A 5.2-magnitude quake shook New York City in 1737 and another of the same severity hit in 1884.

Tremors were felt from Maine to Virginia.

There are several fault lines in the metro area, including one along Manhattan’s 125th St. – which may have generated two small tremors in 1981 and may have been the source of the major 1737 earthquake, says Armbruster.

There’s another fault line on Dyckman St and one in Dobbs Ferry in nearby Westchester County.

“The problem here comes from many subtle faults,” explained Skyes after the study was published.

He adds: “We now see there is earthquake activity on them. Each one is small, but when you add them up, they are probably more dangerous than we thought.”

“Considering population density and the condition of the region’s infrastructure and building stock, it is clear that even a moderate earthquake would have considerable consequences in terms of public safety and economic impact,” says the New York City Area Consortium for Earthquake Loss Mitigation on its website.

Armbruster says a 5.0-magnitude earthquake today likely would result in casualties and hundreds of millions of dollars in damage.

“I would expect some people to be killed,” he notes.

The scope and scale of damage would multiply exponentially with each additional tick on the Richter scale.

New York Subways at the Sixth Seal (Revelation 6)

How vulnerable are NYC’s underwater subway tunnels to flooding?

Ashley Fetters

New York City is full of peculiar phenomena—rickety fire escapes; 100-year-old subway tunnelsair conditioners propped perilously into window frames—that can strike fear into the heart of even the toughest city denizen. But should they? Every month, writer Ashley Fetters will be exploring—and debunking—these New York-specific fears, letting you know what you should actually worry about, and what anxieties you can simply let slip away.

The 25-minute subway commute from Crown Heights to the Financial District on the 2/3 line is, in my experience, a surprisingly peaceful start to the workday—save for one 3,100-foot stretch between the Clark Street and Wall Street stations, where for three minutes I sit wondering what the probability is that I will soon die a torturous, claustrophobic drowning death right here in this subway car.

The Clark Street Tunnel, opened in 1916, is one of approximately a dozen tunnels that escort MTA passengers from one borough to the next underwater—and just about all of them, with the exception of the 1989 addition of the 63rd Street F train tunnel, were constructed between 1900 and 1936.

Each day, thousands of New Yorkers venture across the East River and back again through these tubes buried deep in the riverbed, some of which are nearing or even past their 100th birthdays. Are they wrong to ponder their own mortality while picturing one of these watery catacombs suddenly springing a leak?

Mostly yes, they are, says Michael Horodniceanu, the former president of MTA Capital Construction and current principal of Urban Advisory Group. First, it’s important to remember that the subway tunnel is built under the riverbed, not just in the river—so what immediately surrounds the tunnel isn’t water but some 25 feet of soil. “There’s a lot of dirt on top of it,” Horodniceanu says. “It’s well into the bed of the bottom of the channel.”

And second, as Angus Kress Gillespie, author of Crossing Under the Hudson: The Story of the Holland and Lincoln Tunnels, points out, New York’s underwater subway tunnels are designed to withstand some leaking. And withstand it they do: Pumps placed below the floor of the tunnel, he says, are always running, always diverting water seepage into the sewers. (Horodniceanu says the amount of water these pumps divert into the sewer system each day numbers in the thousands of gallons.)

Additionally, MTA crews routinely repair the grouting and caulking, and often inject a substance into the walls that creates a waterproof membrane outside the tunnel—which keeps water out of the tunnel and relieves any water pressure acting on its walls. New tunnels, Horodniceanu points out, are even built with an outside waterproofing membrane that works like an umbrella: Water goes around it, it falls to the sides, and then it gets channeled into a pumping station and pumped out.

Of course, the classic New York nightmare scenario isn’t just a cute little trickle finding its way in. The anxiety daydream usually involves something sinister, or seismic. The good news, however, is that while an earthquake or explosion would indeed be bad for many reasons, it likely wouldn’t result in the frantic flooding horror scene that plays out in some commuters’ imaginations.

The Montague Tube, which sustained severe damage during Hurricane Sandy.

MTA New York City Transit / Marc A. Hermann

Horodniceanu assures me that tunnels built more recently are “built to withstand a seismic event.” The older tunnels, however—like, um, the Clark Street Tunnel—“were not seismically retrofitted, let me put it that way,” Horodniceanu says. “But the way they were built is in such a way that I do not believe an earthquake would affect them.” They aren’t deep enough in the ground, anyway, he says, to be too intensely affected by a seismic event. (The MTA did not respond to a request for comment.)

One of the only real threats to tunnel infrastructure, Horodniceanu adds, is extreme weather. Hurricane Sandy, for example, caused flooding in the tunnels, which “created problems with the infrastructure.” He continues, “The tunnels have to be rebuilt as a result of saltwater corroding the infrastructure.”

Still, he points out, hurricanes don’t exactly happen with no warning. So while Hurricane Sandy did cause major trauma to the tunnels, train traffic could be stopped with ample time to keep passengers out of harm’s way. In 2012, Governor Andrew Cuomo directed all the MTA’s mass transit services to shut down at 7 p.m. the night before Hurricane Sandy was expected to hit New York City.

And Gillespie, for his part, doubts even an explosion would result in sudden, dangerous flooding. A subway tunnel is not a closed system, he points out; it’s like a pipe that’s open at both ends. “The force of a blast would go forwards and backwards out the exit,” he says.

So the subway-train version of that terrifying Holland Tunnel flood scene in Sylvester Stallone’s Daylight is … unrealistic, right?

“Yeah,” Gillespie laughs. “Yeah. It is.”

Got a weird New York anxiety that you want explored? E-mail tips@curbed.com, and we may include it in a future column.