East Coast Quakes and the Sixth Seal: Revelation 6

Items lie on the floor of a grocery store after an earthquake on Sunday, August 9, 2020 in North Carolina.

East Coast Quakes: What to Know About the Tremors Below

By Meteorologist Dominic Ramunni Nationwide PUBLISHED 7:13 PM ET Aug. 11, 2020 PUBLISHED 7:13 PM EDT Aug. 11, 2020

People across the Carolinas and Mid-Atlantic were shaken, literally, on a Sunday morning as a magnitude 5.1 earthquake struck in North Carolina on August 9, 2020.

Centered in Sparta, NC, the tremor knocked groceries off shelves and left many wondering just when the next big one could strike.

Fault Lines

Compared to the West Coast, there are far fewer fault lines in the East. This is why earthquakes in the East are relatively uncommon and weaker in magnitude.

That said, earthquakes still occur in the East.

According to Spectrum News Meteorologist Matthew East, “Earthquakes have occurred in every eastern U.S. state, and a majority of states have recorded damaging earthquakes. However, they are pretty rare. For instance, the Sparta earthquake Sunday was the strongest in North Carolina in over 100 years.”

While nowhere near to the extent of the West Coast, damaging earthquakes can and do affect much of the eastern half of the country.

For example, across the Tennesse River Valley lies the New Madrid Fault Line. While much smaller in size than those found farther west, the fault has managed to produce several earthquakes over magnitude 7.0 in the last couple hundred years.

In 1886, an estimated magnitude 7.0 struck Charleston, South Carolina along a previously unknown seismic zone. Nearly the entire town had to be rebuilt.

Vulnerabilities

The eastern half of the U.S. has its own set of vulnerabilities from earthquakes.

Seismic waves actually travel farther in the East as opposed to the West Coast. This is because the rocks that make up the East are tens, if not hundreds, of millions of years older than in the West.

These older rocks have had much more time to bond together with other rocks under the tremendous pressure of Earth’s crust. This allows seismic energy to transfer between rocks more efficiently during an earthquake, causing the shaking to be felt much further.

This is why, during the latest quake in North Carolina, impacts were felt not just across the state, but reports of shaking came as far as Atlanta, Georgia, nearly 300 miles away.

Reports of shaking from different earthquakes of similar magnitude.

Quakes in the East can also be more damaging to infrastructure than in the West. This is generally due to the older buildings found east. Architects in the early-to-mid 1900s simply were not accounting for earthquakes in their designs for cities along the East Coast.

When a magnitude 5.8 earthquake struck Virginia in 2011, not only were numerous historical monuments in Washington, D.C. damaged, shaking was reported up and down the East Coast with tremors even reported in Canada.

Unpredictable

There is no way to accurately predict when or where an earthquake may strike.

Some quakes will have a smaller earthquake precede the primary one. This is called a foreshock.

The problem is though, it’s difficult to say whether the foreshock is in fact a foreshock and not the primary earthquake. Only time will tell the difference.

The United State Geological Survey (USGS) is experimenting with early warning detection systems in the West Coast.

While this system cannot predict earthquakes before they occur, they can provide warning up to tens of seconds in advance that shaking is imminent. This could provide just enough time to find a secure location before the tremors begin.

Much like hurricanes, tornadoes, or snowstorms, earthquakes are a natural occuring phenomenon that we can prepare for.

The USGS provides an abundance of resources on how to best stay safe when the earth starts to quake.

The Impending Sixth Seal (Revelation 6:12)

An illustration of a seismogram

Massachusetts struck by 4.0 magnitude earthquake felt as far as Long Island

By Jackie Salo

November 8, 2020 

A 3.6-magnitude earthquake shook Bliss Corner, Massachusetts, on Sunday morning, officials said — startling residents across the Northeast who expressed shock about the rare tremors.

The quake struck the area about five miles southwest of the community in Buzzards Bay just after 9 a.m. — marking the strongest one in the area since a magnitude 3.5 temblor in March 1976, the US Geological Survey said.

With a depth of 9.3 miles, the impact was felt across Massachusetts, Rhode Island, and into Connecticut and Long Island, New York.

“This is the strongest earthquake that we’ve recorded in that area — Southern New England,” USGS geophysicist Paul Caruso told The Providence Journal.

But the quake was still considered “light” on the magnitude scale, meaning that it was felt but didn’t cause significant damage.

The quake, however, was unusual for the region — which has only experienced 26 larger than a magnitude 2.5 since 1973, Caruso said.

Around 14,000 people went onto the USGS site to report the shaking — with some logging tremors as far as Easthampton, Massachusetts, and Hartford, Connecticut, both about 100 miles away.

“It’s common for them to be felt very far away because the rock here is old and continuous and transmits the energy a long way,” Caruso said.

Journalist Katie Couric was among those on Long Island to be roused by the Sunday-morning rumblings.

“Did anyone on the east coast experience an earthquake of sorts?” Couric wrote on Twitter.

“We are on Long Island and the attic and walls rattled.”

Closer to the epicenter, residents estimated they felt the impact for 10 to 15 seconds.

“In that moment, it feels like it’s going on forever,” said Ali Kenner Brodsky, who lives in Dartmouth, Massachusetts.

The History of Earth­quakes In New York Before the Sixth Seal (Revelation 6:12)

      The History of Earth­quakes In New YorkBy Meteorologist Michael Gouldrick New York State PUBLISHED 6:30 AM ET Sep. 09, 2020 PUBLISHED 6:30 AM EDT Sep. 09, 2020New York State has a long history of earthquakes. Since the early to mid 1700s there have been over 550 recorded earthquakes that have been centered within the state’s boundary. New York has also been shaken by strong earthquakes that occurred in southeast Canada and the Mid-Atlantic states.

Courtesy of Northeast States Emergency ConsortiumThe largest earthquake that occurred within New York’s borders happened on September 5th, 1944. It was a magnitude 5.9 and did major damage in the town of Massena.A school gymnasium suffered major damage, some 90% of chimneys toppled over and house foundations were cracked. Windows broke and plumbing was damaged. This earthquake was felt from Maine to Michigan to Maryland.Another strong quake occurred near Attica on August 12th, 1929. Chimneys took the biggest hit, foundations were also cracked and store shelves toppled their goods.In more recent memory some of the strongest quakes occurred On April 20th, 2002 when a 5.0 rattled the state and was centered on Au Sable Forks area near Plattsburg, NY.Strong earthquakes outside of New York’s boundary have also shaken the state. On February 5th, 1663 near Charlevoix, Quebec, an estimated magnitude of 7.5 occurred. A 6.2 tremor was reported in Western Quebec on November 1st in 1935. A 6.2 earthquake occurred in the same area on March 1st 1925. Many in the state also reported shaking on August 23rd, 2011 from a 5.9 earthquake near Mineral, Virginia.

Earthquakes in the northeast U.S. and southeast Canada are not as intense as those found in other parts of the world but can be felt over a much larger area. The reason for this is the makeup of the ground. In our part of the world, the ground is like a jigsaw puzzle that has been put together. If one piece shakes, the whole puzzle shakes.In the Western U.S., the ground is more like a puzzle that hasn’t been fully put together yet. One piece can shake violently, but only the the pieces next to it are affected while the rest of the puzzle doesn’t move.In Rochester, New York, the most recent earthquake was reported on March 29th, 2020. It was a 2.6 magnitude shake centered under Lake Ontario. While most did not feel it, there were 54 reports of the ground shaking.So next time you are wondering why the dishes rattled, or you thought you felt the ground move, it certainly could have been an earthquake in New York.Here is a website from the USGS (United Sates Geologic Society) of current earthquakes greater than 2.5 during the past day around the world. As you can see, the Earth is a geologically active planet!Another great website of earthquakes that have occurred locally can be found here.To learn more about the science behind earthquakes, check out this website from the USGS.

We really are due for the sixth seal: Revelation 6:12

Opinion/Al Southwick: Could an earthquake really rock New England? We are 265 years overdue

On Nov. 8, a 3.6 magnitude earthquake struck Buzzard’s Bay off the coast of New Bedford. Reverberations were felt up to 100 miles away, across Massachusetts, Rhode Island, and parts of Connecticut and New York. News outlets scrambled to interview local residents who felt the ground shake their homes. Seismologists explained that New England earthquakes, while uncommon and usually minor, are by no means unheard of.

The last bad one we had took place on Nov. 18, 1755, a date long remembered.

It’s sometimes called the Boston Earthquake and sometimes the Cape Ann Earthquake. Its epicenter is thought to have been in the Atlantic Ocean about 25 miles east of Gloucester. Estimates say that it would have registered between 6.0 and 6.3 on the modern Richter scale. It was an occasion to remember as chronicled by John E. Ebel, director of the Weston observatory of Boston College:

“At about 4:30 in the morning on 18 November, 1755, a strong earthquake rocked the New England area. Observers reported damage to chimneys, brick buildings and stone walls in coastal communities from Portland, Maine to south of Boston … Chimneys were also damaged as far away as Springfield, Massachusetts, and New Haven, Connecticut. The earthquake was felt at Halifax, Nova Scotia to the northeast, Lake Champlain to the northwest, and Winyah, South Carolina to the southwest. The crew of a ship in deep water about 70 leagues east of Boston thought it had run aground and only realized it had felt an earthquake after it arrived at Boston later that same day.

“The 1755 earthquake rocked Boston, with the shaking lasting more than a minute. According to contemporary reports, as many as 1,500 chimneys were shattered or thrown down in part, the gable ends of about 15 brick buildings were broken out, and some church steeples ended up tilted due to the shaking. Falling chimney bricks created holes in the roofs of some houses. Some streets, particularly those on manmade ground along the water, were so covered with bricks and debris that passage by horse-drawn carriage was impossible. Many homes lost china and glassware that was thrown from shelves and shattered. A distiller’s cistern filled with liquor broke apart and lost its contents.”

We don’t have many details of the earthquake’s impact here, there being no newspaper in Worcester County at that time. We do know that one man, Christian Angel, working in a “silver” mine in Sterling, was buried alive when the ground shook. He is the only known fatality in these parts. We can assume that, if the quake shook down chimneys in Springfield and New Haven, it did even more damage hereabouts. We can imagine the cries of alarm and the feeling of panic as trees swayed violently, fields and meadows trembled underfoot and pottery fell off shelves and crashed below.

The Boston Earthquake was an aftershock from the gigantic Lisbon Earthquake that had leveled Lisbon, Portugal, a few days before. That cataclysm, estimated as an 8 or 9 on the modern Richter scale, was the most devastating natural catastrophe to hit western Europe since Roman times. The first shock struck on Nov. 1, at about 9 in the morning.

According to one account: ”Suddenly the city began to shudder violently, its tall medieval spires waving like a cornfield in the breeze … In the ancient cathedral, the Basilica de Santa Maria, the nave rocked and the massive chandeliers began swinging crazily. . . . Then came a second, even more powerful shock. And with it, the ornate façade of every great building in the square … broke away and cascaded forward.”

Until that moment, Lisbon had been one of the leading cities in western Europe, right up there with London and Paris. With 250,000 people, it was a center of culture, financial activity and exploration. Within minutes it was reduced to smoky, dusty rubble punctuated by human groans and screams. An estimated 60,000 to 100,000 lost their lives.

Since then, New England has been mildly shaken by quakes from time to time. One series of tremors on March 1, 1925, was felt throughout Worcester County, from Fitchburg to Worcester, and caused a lot of speculation.

What if another quake like that in 1755 hit New England today? What would happen? That question was studied 15 years ago by the Massachusetts Civil Defense Agency. Its report is sobering:

“The occurrence of a Richter magnitude 6.25 earthquake off Cape Ann, Massachusetts … would cause damage in the range of 2 to 10 billion dollars … in the Boston metropolitan area (within Route 128) due to ground shaking, with significant additional losses due to secondary effects such as soil liquefaction failures, fires and economic interruptions. Hundreds of deaths and thousands of major and minor injuries would be expected … Thousands of people could be displaced from their homes … Additional damage may also be experienced outside the 128 area, especially closer to the earthquake epicenter.”

So even if we don’t worry much about volcanoes, we know that hurricanes and tornadoes are always possible. As for earthquakes, they may not happen in this century or even in this millennium, but it is sobering to think that if the tectonic plates under Boston and Gloucester shift again, we could see a repeat of 1755.

Experts puzzled by continuing South Carolina earthquakes before the sixth seal: Revelation 6

Experts puzzled by continuing South Carolina earthquakes

Another earthquake has struck near South Carolina’s capital city

  • By MEG KINNARD – Associated Press

COLUMBIA, S.C. (AP) — Yet another earthquake has struck near South Carolina’s capital city, the ninth in a series of rumblings that have caused geologists to wonder how long the convulsions might last.

Early Wednesday, a 2.6-magnitude earthquake struck near Elgin, about 25 miles (40 kilometers) northeast of Columbia, according to the U.S. Geological Survey. It was measured at a depth of 0.5 kilometers, officials said.

That area, a community of fewer than 2,000 residents near the border of Richland and Kershaw counties, has become the epicenter of a spate of recent seismic activity, starting with a 3.3-magnitude earthquake on Dec. 27.That quake clattered glass windows and doors in their frames, sounding like a heavy piece of construction equipment or concrete truck rumbling down the road.

advertisement

Since then, a total of eight more earthquakes have been recorded nearby, ranging from 1.7 to Wednesday’s 2.6 quake. No injuries or damage have been reported.

According to the South Carolina Emergency Management Division, the state typically averages up to 20 quakes each year. Clusters often happen, like six small earthquakes in just more than a week last year near Jenkinsville, about 38 miles (61 kilometers) west of the most recent group of tremors.

Earthquakes are nothing new to South Carolina, although most tend to happen closer to the coast. According to emergency management officials, about 70% of South Carolina earthquakes are located in the Middleton Place-Summerville Seismic Zone, about 12.4 miles (20 kilometers) northwest of Charleston.

In 1886, that historic coastal city was home to the largest recorded earthquake in the history of the southeastern United States, according to seismic officials. The quake, thought to have had a magnitude of at least 7, left dozens of people dead and destroyed hundreds of buildings.

That event was preceded by a series of smaller tremors over several days, although it was not known that the foreshocks were necessarily leading up to something more catastrophic until after the major quake.null

Frustratingly, there’s no way to know if smaller quakes are foreshadowing something more dire, according to Steven Jaume, a College of Charleston geology professor who characterized the foreshocks ahead of Charleston’s 1886 disaster as “rare.”

“You can’t see it coming,” Jaume told The Associated Press on Wednesday. “There isn’t anything obvious moving or changing that you can put your finger on that you can say, ‘This is leading to this.’”

Typically, Jaume said that the recent quakes near Elgin — which lies along a large fault system that extends from Georgia through the Carolinas and into Virginia — would be characterized as aftershocks of the Dec. 27 event, since the subsequent quakes have all been smaller than the first.

But the fact that the events keep popping up more than a week after the initial one, Jaume said, has caused consternation among the experts who study these events.

“They’re not dying away the way we would expect them to,” Jaume said. “What does that mean? I don’t know.”


Meg Kinnard can be reached at http://twitter.com/MegKinnardAP.

Numerous Shakes Before the Sixth Seal: Revelation 6

5th earthquake in 2 days rattles Midlands, this one a 2.4 magnitude

USGS confirms a fifth minor earthquake centered in the Elgin area this week

ELGIN, S.C. — The US Geological Survey has confirmed a fifth minor earthquake within two days in the Lugoff-Elgin area of South Carolina.

Wednesday morning’s rumbler occurred at 4:12 a.m. and registered 2.4 magnitude. The series of quakes began on Monday with a 3.3 magnitude at 2:18 p.m.. That first earthquake was followed up by three aftershocks that ranged in magnitude from 2.52 to 1.74. The latest one occurred just after 10 p.m. Monday evening.

The South Carolina Emergency Management Division says “swarms” of micro earthquakes are historically fairly common.

The recent quakes should not be strong enough to do much damage. Usually quakes registering a magnitude of 2 are the threshold of what a human might feel. Earthquakes of magnitude 4 would cause items to be thrown off shelves; magnitude 5 or 6 will cause cracks in walls and breaking windows; a quake registering a magnitude of 10 will cause complete destruction.

The largest earthquake event in South Carolina occurred on August 31, 1886, in the Summerville/Charleston area. That earthquake registered a magnitude of 7.3 and killed 60 people. The Charleston Earthquake was felt from Cuba to New York, and Bermuda to the Mississippi River.

New York Earthquake: City of the Sixth Seal (Revelation 6:12)

New York earthquake: City at risk of ‚dangerous shaking from far away‘
Joshua Nevett
Published 30th April 2018
SOME of New York City’s tallest skyscrapers are at risk of being shaken by seismic waves triggered by powerful earthquakes from miles outside the city, a natural disaster expert has warned.
Researchers believe that a powerful earthquake, magnitude 5 or greater, could cause significant damage to large swathes of NYC, a densely populated area dominated by tall buildings.
A series of large fault lines that run underneath NYC’s five boroughs, Manhattan, Brooklyn, Queens, The Bronx and Staten Island, are capable of triggering large earthquakes.
Some experts have suggested that NYC is susceptible to at least a magnitude 5 earthquake once every 100 years.
The last major earthquake measuring over magnitude 5.0 struck NYC in 1884 – meaning another one of equal size is “overdue” by 34 years, according their prediction model.
Natural disaster researcher Simon Day, of University College London, agrees with the conclusion that NYC may be more at risk from earthquakes than is usually thought.
EARTHQUAKE RISK: New York is susceptible to seismic shaking from far-away tremors
But the idea of NYC being “overdue” for an earthquake is “invalid”, not least because the “very large number of faults” in the city have individually low rates of activity, he said.
The model that predicts strong earthquakes based on timescale and stress build-up on a given fault has been “discredited”, he said.
What scientists should be focusing on, he said, is the threat of large and potentially destructive earthquakes from “much greater distances”.
The dangerous effects of powerful earthquakes from further away should be an “important feature” of any seismic risk assessment of NYC, Dr Day said.

GETTY
THE BIG APPLE: An aerial view of Lower Manhattan at dusk in New York City

USGS
RISK: A seismic hazard map of New York produced by USGS
“New York is susceptible to seismic shaking from earthquakes at much greater distances” Dr Simon Day, natural disaster researcher
This is because the bedrock underneath parts of NYC, including Long Island and Staten Island, cannot effectively absorb the seismic waves produced by earthquakes.
“An important feature of the central and eastern United States is, because the crust there is old and cold, and contains few recent fractures that can absorb seismic waves, the rate of seismic reduction is low.
Central regions of NYC, including Manhattan, are built upon solid granite bedrock; therefore the amplification of seismic waves that can shake buildings is low.
But more peripheral areas, such as Staten Island and Long Island, are formed by weak sediments, meaning seismic hazard in these areas is “very likely to be higher”, Dr Day said.
“Thus, like other cities in the eastern US, New York is susceptible to seismic shaking from earthquakes at much greater distances than is the case for cities on plate boundaries such as Tokyo or San Francisco, where the crustal rocks are more fractured and absorb seismic waves more efficiently over long distances,” Dr Day said.
In the event of a large earthquake, dozens of skyscrapers, including Chrysler Building, the Woolworth Building and 40 Wall Street, could be at risk of shaking.
“The felt shaking in New York from the Virginia earthquake in 2011 is one example,” Dr Day said.
On that occasion, a magnitude 5.8 earthquake centered 340 miles south of New York sent thousands of people running out of swaying office buildings.

USGS
FISSURES: Fault lines in New York City have low rates of activity, Dr Day said
NYC Mayor Michael Bloomberg said the city was “lucky to avoid any major harm” as a result of the quake, whose epicenter was near Louisa, Virginia, about 40 miles from Richmond.
“But an even more impressive one is the felt shaking from the 1811-1812 New Madrid earthquakes in the central Mississippi valley, which was felt in many places across a region, including cities as far apart as Detroit, Washington DC and New Orleans, and in a few places even further afield including,” Dr Day added.
“So, if one was to attempt to do a proper seismic hazard assessment for NYC, one would have to include potential earthquake sources over a wide region, including at least the Appalachian mountains to the southwest and the St Lawrence valley to the north and east.”

Wait, we can get the Sixth Seal? Revelation 6:12

Wait, we can get earthquakes in Western New York?

WEATHER BLOG

by: Christine GregoryPosted: May 28, 2021 / 12:40 PM EDT / Updated: May 28, 2021 / 02:34 PM EDT

ROCHESTER, N.Y. (WROC) — The short answer to that is, yes! And Thursday evening was a prime example of that.

At approximately 8:41 P.M., residents from Livingston County reported feeling the light tremor. It occurred about 30 miles southeast of Batavia and rated a 2.4 in magnitude on the Richter scale. USGS confirms earthquake reported in Livingston County

We typically don’t think of New York state for having earthquakes, but they certainly are capable of having them. 

Upon my own investigation, there does appear to be an existing fault line right nearby where the quake happened that may have contributed to the light tremor, but it is not confirmed by official sources.

The Clarendon-Linden fault line consists of a major series of faults that runs from Lake Ontario to Allegany county, that are said to be responsible for much of the seismic activity that occurs in the region. It is a north-south oriented fault system that displays both strike-slip and dip-slip motion. 

Strike-Slip Fault

Dip-Slip Fault

Clarendon-Linden Fault System

Image courtesy: glyfac.buffalo.edu

This fault is actively known for minor quakes, but is said to not be a large threat to the area. According to Genesee county, researchers have identified many potential fault lines both to the east, and to the west of the Clarendon-Linden Fault.

According to the University at Buffalo, they have proof that upstate New York is criss-crossed by fault lines. Through remote sensing by satellite and planes, a research group found that “there are hundreds of faults throughout the Appalachian Plateau, some of which may have been seismically active — albeit sporadically — since Precambrian times, about 1 billion years ago.”

The state of New York averages about a handful of minor earthquakes every year. In Western New York in December of 2019, a 2.1 earthquake occurred near Sodus Point over Lake Ontario, and in March of 2016, a 2.1 earthquake occurred near Attica in Genesee county. 

For an interactive map of recent earthquakes from the USGS click HERE.

~Meteorologist Christine Gregory 

Copyright 2021 Nexstar Media Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.

Quakeland: On the Road to America’s Next Devastating Earthquake: Revelation 6

Quakeland: On the Road to America’s Next Devastating EarthquakeRoger BilhamQuakeland: New York and the Sixth Seal (Revelation 6:12)Given recent seismic activity — political as well as geological — it’s perhaps unsurprising that two books on earthquakes have arrived this season. One is as elegant as the score of a Beethoven symphony; the other resembles a diary of conversations overheard during a rock concert. Both are interesting, and both relate recent history to a shaky future.Journalist Kathryn Miles’s Quakeland is a litany of bad things that happen when you provoke Earth to release its invisible but ubiquitous store of seismic-strain energy, either by removing fluids (oil, water, gas) or by adding them in copious quantities (when extracting shale gas in hydraulic fracturing, also known as fracking, or when injecting contaminated water or building reservoirs). To complete the picture, she describes at length the bad things that happen during unprovoked natural earthquakes. As its subtitle hints, the book takes the form of a road trip to visit seismic disasters both past and potential, and seismologists and earthquake engineers who have first-hand knowledge of them. Their colourful personalities, opinions and prejudices tell a story of scientific discovery and engineering remedy.Miles poses some important societal questions. Aside from human intervention potentially triggering a really damaging earthquake, what is it actually like to live in neighbourhoods jolted daily by magnitude 1–3 earthquakes, or the occasional magnitude 5? Are these bumps in the night acceptable? And how can industries that perturb the highly stressed rocks beneath our feet deny obvious cause and effect? In 2015, the Oklahoma Geological Survey conceded that a quadrupling of the rate of magnitude-3 or more earthquakes in recent years, coinciding with a rise in fracking, was unlikely to represent a natural process. Miles does not take sides, but it’s difficult for the reader not to.She visits New York City, marvelling at subway tunnels and unreinforced masonry almost certainly scheduled for destruction by the next moderate earthquake in the vicinity. She considers the perils of nuclear-waste storage in Nevada and Texas, and ponders the risks to Idaho miners of rock bursts — spontaneous fracture of the working face when the restraints of many million years of confinement are mined away. She contemplates the ups and downs of the Yellowstone Caldera — North America’s very own mid-continent supervolcano — and its magnificently uncertain future. Miles also touches on geothermal power plants in southern California’s Salton Sea and elsewhere; the vast US network of crumbling bridges, dams and oil-storage farms; and the magnitude 7–9 earthquakes that could hit California and the Cascadia coastline of Oregon and Washington state this century. Amid all this doom, a new elementary school on the coast near Westport, Washington, vulnerable to inbound tsunamis, is offered as a note of optimism. With foresight and much persuasion from its head teacher, it was engineered to become an elevated safe haven.Miles briefly discusses earthquake prediction and the perils of getting it wrong (embarrassment in New Madrid, Missouri, where a quake was predicted but never materialized; prison in L’Aquila, Italy, where scientists failed to foresee a devastating seismic event) and the successes of early-warning systems, with which electronic alerts can be issued ahead of damaging seismic waves. Yes, it’s a lot to digest, but most of the book obeys the laws of physics, and it is a engaging read. One just can’t help wishing that Miles’s road trips had taken her somewhere that wasn’t a disaster waiting to happen.Catastrophic damage in Anchorage, Alaska, in 1964, caused by the second-largest earthquake in the global instrumental record.In The Great Quake, journalist Henry Fountain provides us with a forthright and timely reminder of the startling historical consequences of North America’s largest known earthquake, which more than half a century ago devastated southern Alaska. With its epicentre in Prince William Sound, the 1964 quake reached magnitude 9.2, the second largest in the global instrumental record. It released more energy than either the 2004 Sumatra–Andaman earthquake or the 2011 Tohoku earthquake off Japan; and it generated almost as many pages of scientific commentary and description as aftershocks. Yet it has been forgotten by many.The quake was scientifically important because it occurred at a time when plate tectonics was in transition from hypothesis to theory. Fountain expertly traces the theory’s historical development, and how the Alaska earthquake was pivotal in nailing down one of the most important predictions. The earthquake caused a fjordland region larger than England to subside, and a similarly huge region of islands offshore to rise by many metres; but its scientific implications were not obvious at the time. Eminent seismologists thought that a vertical fault had slipped, drowning forests and coastlines to its north and raising beaches and islands to its south. But this kind of fault should have reached the surface, and extended deep into Earth’s mantle. There was no geological evidence of a monster surface fault separating these two regions, nor any evidence for excessively deep aftershocks. The landslides and liquefied soils that collapsed houses, and the tsunami that severely damaged ports and infrastructure, offered no clues to the cause.“Previous earthquakes provide clear guidance about present-day vulnerability.” The hero of The Great Quake is the geologist George Plafker, who painstakingly mapped the height reached by barnacles lifted out of the intertidal zone along shorelines raised by the earthquake, and documented the depths of drowned forests. He deduced that the region of subsidence was the surface manifestation of previously compressed rocks springing apart, driving parts of Alaska up and southwards over the Pacific Plate. His finding confirmed a prediction of plate tectonics, that the leading edge of the Pacific Plate plunged beneath the southern edge of Alaska along a gently dipping thrust fault. That observation, once fully appreciated, was applauded by the geophysics community.Fountain tells this story through the testimony of survivors, engineers and scientists, interweaving it with the fascinating history of Alaska, from early discovery by Europeans to purchase from Russia by the United States in 1867, and its recent development. Were the quake to occur now, it is not difficult to envisage that with increased infrastructure and larger populations, the death toll and price tag would be two orders of magnitude larger than the 139 fatalities and US$300-million economic cost recorded in 1964.What is clear from these two books is that seismicity on the North American continent is guaranteed to deliver surprises, along with unprecedented economic and human losses. Previous earthquakes provide clear guidance about the present-day vulnerability of US infrastructure and populations. Engineers and seismologists know how to mitigate the effects of future earthquakes (and, in mid-continent, would advise against the reckless injection of waste fluids known to trigger earthquakes). It is merely a matter of persuading city planners and politicians that if they are tempted to ignore the certainty of the continent’s seismic past, they should err on the side of caution when considering its seismic future.

New York Earthquake: City of the Sixth Seal (Revelation 6:12)

New York earthquake: City at risk of ‚dangerous shaking from far away‘
Joshua Nevett
Published 30th April 2018
SOME of New York City’s tallest skyscrapers are at risk of being shaken by seismic waves triggered by powerful earthquakes from miles outside the city, a natural disaster expert has warned.
Researchers believe that a powerful earthquake, magnitude 5 or greater, could cause significant damage to large swathes of NYC, a densely populated area dominated by tall buildings.
A series of large fault lines that run underneath NYC’s five boroughs, Manhattan, Brooklyn, Queens, The Bronx and Staten Island, are capable of triggering large earthquakes.
Some experts have suggested that NYC is susceptible to at least a magnitude 5 earthquake once every 100 years.
The last major earthquake measuring over magnitude 5.0 struck NYC in 1884 – meaning another one of equal size is “overdue” by 34 years, according their prediction model.
Natural disaster researcher Simon Day, of University College London, agrees with the conclusion that NYC may be more at risk from earthquakes than is usually thought.
EARTHQUAKE RISK: New York is susceptible to seismic shaking from far-away tremors
But the idea of NYC being “overdue” for an earthquake is “invalid”, not least because the “very large number of faults” in the city have individually low rates of activity, he said.
The model that predicts strong earthquakes based on timescale and stress build-up on a given fault has been “discredited”, he said.
What scientists should be focusing on, he said, is the threat of large and potentially destructive earthquakes from “much greater distances”.
The dangerous effects of powerful earthquakes from further away should be an “important feature” of any seismic risk assessment of NYC, Dr Day said.

GETTY
THE BIG APPLE: An aerial view of Lower Manhattan at dusk in New York City

USGS
RISK: A seismic hazard map of New York produced by USGS
“New York is susceptible to seismic shaking from earthquakes at much greater distances” Dr Simon Day, natural disaster researcher
This is because the bedrock underneath parts of NYC, including Long Island and Staten Island, cannot effectively absorb the seismic waves produced by earthquakes.
“An important feature of the central and eastern United States is, because the crust there is old and cold, and contains few recent fractures that can absorb seismic waves, the rate of seismic reduction is low.
Central regions of NYC, including Manhattan, are built upon solid granite bedrock; therefore the amplification of seismic waves that can shake buildings is low.
But more peripheral areas, such as Staten Island and Long Island, are formed by weak sediments, meaning seismic hazard in these areas is “very likely to be higher”, Dr Day said.
“Thus, like other cities in the eastern US, New York is susceptible to seismic shaking from earthquakes at much greater distances than is the case for cities on plate boundaries such as Tokyo or San Francisco, where the crustal rocks are more fractured and absorb seismic waves more efficiently over long distances,” Dr Day said.
In the event of a large earthquake, dozens of skyscrapers, including Chrysler Building, the Woolworth Building and 40 Wall Street, could be at risk of shaking.
“The felt shaking in New York from the Virginia earthquake in 2011 is one example,” Dr Day said.
On that occasion, a magnitude 5.8 earthquake centered 340 miles south of New York sent thousands of people running out of swaying office buildings.

USGS
FISSURES: Fault lines in New York City have low rates of activity, Dr Day said
NYC Mayor Michael Bloomberg said the city was “lucky to avoid any major harm” as a result of the quake, whose epicenter was near Louisa, Virginia, about 40 miles from Richmond.
“But an even more impressive one is the felt shaking from the 1811-1812 New Madrid earthquakes in the central Mississippi valley, which was felt in many places across a region, including cities as far apart as Detroit, Washington DC and New Orleans, and in a few places even further afield including,” Dr Day added.
“So, if one was to attempt to do a proper seismic hazard assessment for NYC, one would have to include potential earthquake sources over a wide region, including at least the Appalachian mountains to the southwest and the St Lawrence valley to the north and east.”