The Sixth Seal: More Than Just Manhattan (Revelation 6:12)

New York, NY – In a Quake, Brooklyn Would Shake More Than Manhattan
By Brooklyn Eagle
New York, NY – The last big earthquake in the New York City area, centered in New York Harbor just south of Rockaway, took place in 1884 and registered 5.2 on the Richter Scale.Another earthquake of this size can be expected and could be quite damaging, says Dr. Won-Young Kim, senior research scientist at the Lamont-Doherty Earth Observatory of Columbia University.
And Brooklyn, resting on sediment, would shake more than Manhattan, built on solid rock. “There would be more shaking and more damage,” Dr. Kim told the Brooklyn Eagle on Wednesday.
If an earthquake of a similar magnitude were to happen today near Brooklyn, “Many chimneys would topple. Poorly maintained buildings would fall down – some buildings are falling down now even without any shaking. People would not be hit by collapsing buildings, but they would be hit by falling debris. We need to get some of these buildings fixed,” he said.
But a 5.2 is “not comparable to Haiti,” he said. “That was huge.” Haiti’s devastating earthquake measured 7.0.
Brooklyn has a different environment than Haiti, and that makes all the difference, he said. Haiti is situated near tectonic plate.
“The Caribbean plate is moving to the east, while the North American plate is moving towards the west. They move about 20 mm – slightly less than an inch – every year.” The plates are sliding past each other, and the movement is not smooth, leading to jolts, he said.
While we don’t have the opportunity for a large jolt in Brooklyn, we do have small, frequent quakes of a magnitude of 2 or 3 on the Richter Scale. In 2001 alone the city experienced two quakes: one in January, measuring 2.4, and one in October, measuring 2.6. The October quake, occurring soon after Sept. 11 terrorist attacks, “caused a lot of panic,” Dr. Kim said.
“People ask me, ‘Should I get earthquake insurance?’ I tell them no, earthquake insurance is expensive. Instead, use that money to fix chimneys and other things. Rather than panicky preparations, use common sense to make things better.”
Secure bookcases to the wall and make sure hanging furniture does not fall down, Dr. Kim said. “If you have antique porcelains or dishes, make sure they’re safely stored. In California, everything is anchored to the ground.”
While a small earthquake in Brooklyn may cause panic, “In California, a quake of magnitude 2 is called a micro-quake,” he added.

A Closer Look At The Sixth Seal (Revelation 6:12)


A Look at the Tri-State’s Active Fault LineMonday, March 14, 2011By Bob Hennelly
The Ramapo Fault is the longest fault in the Northeast that occasionally makes local headlines when minor tremors cause rock the Tri-State region. It begins in Pennsylvania, crosses the Delaware River and continues through Hunterdon, Somerset, Morris, Passaic and Bergen counties before crossing the Hudson River near Indian Point nuclear facility.In the past, it has generated occasional activity that generated a 2.6 magnitude quake in New Jersey’s Peakpack/Gladstone area and 3.0 magnitude quake in Mendham.But the New Jersey-New York region is relatively seismically stable according to Dr. Dave Robinson, Professor of Geography at Rutgers. Although it does have activity.„There is occasional seismic activity in New Jersey,“ said Robinson. „There have been a few quakes locally that have been felt and done a little bit of damage over the time since colonial settlement — some chimneys knocked down in Manhattan with a quake back in the 18th century, but nothing of a significant magnitude.“Robinson said the Ramapo has on occasion registered a measurable quake but has not caused damage: „The Ramapo fault is associated with geological activities back 200 million years ago, but it’s still a little creaky now and again,“ he said.„More recently, in the 1970s and early 1980s, earthquake risk along the Ramapo Fault received attention because of its proximity to Indian Point,“ according to the New Jersey Geological Survey website.Historically, critics of the Indian Point Nuclear facility in Westchester County, New York, did cite its proximity to the Ramapo fault line as a significant risk.In 1884, according to the New Jersey Geological Survey website, the  Rampao Fault was blamed for a 5.5 quake that toppled chimneys in New York City and New Jersey that was felt from Maine to Virginia.„Subsequent investigations have shown the 1884 Earthquake epicenter was actually located in Brooklyn, New York, at least 25 miles from the Ramapo Fault,“ according to the New Jersey Geological Survey website.

The Sixth Seal Is Past Due (Revelation 6:12)

New York City is Past Due for an Earthquake
by Jessica Dailey, 03/22/11
filed under: News
New York City may appear to be an unlikely place for a major earthquake, but according to history, we’re past due for a serious shake. Seismologists at Columbia University’s Lamont-Doherty Earth Observatory say that about once every 100 years, an earthquake of at least a magnitude of 5.0 rocks the Big Apple. The last one was a 5.3 tremor that hit in 1884 — no one was killed, but buildings were damaged.
Any tremor above a 6.0 magnitude can be catastrophic, but it is extremely unlikely that New York would ever experience a quake like the recent 8.9 earthquake in Japan. A study by the Earth Observatory found that a 6.0 quake hits the area about every 670 years, and a 7.0 magnitude hits about every 3,400 years.
There are several fault lines in New York’s metro area, including one along 125th Street, which may have caused two small tremors in 1981 and a 5.2 magnitude quake in 1737. There is also a fault line on Dyckman Street in Inwood, and another in Dobbs Ferry in Westchester County. The New York City Area Consortium for Earthquake Loss Mitigation rates the chance of an earthquake hitting the city as moderate.
John Armbruster, a seismologist at the Earth Observatory, said that if a 5.0 magnitude quake struck New York today, it would result in hundreds of millions, possibly billions of dollars in damages. The city’s skyscrapers would not collapse, but older brick buildings and chimneys would topple, likely resulting in casualities.
The Earth Observatory is expanding its studies of potential earthquake damage to the city. They currently have six seismometers at different landmarks throughout the five boroughs, and this summer, they plan to place one at the arch in Washington Square Park and another in Bryant Park.
Won-Young Kim, who works alongside Armbuster, says his biggest concern is that we can’t predict when an earthquake might hit. “It can happen anytime soon,” Kim told the Metro. If it happened tomorrow, he added, “I would not be surprised. We can expect it any minute, we just don’t know when and where.”
Armbuster voiced similar concerns to the Daily News. “Will there be one in my lifetime or your lifetime? I don’t know,” he said. “But this is the longest period we’ve gone without one.”
Via Metro and NY Daily News

Don’t Forget About the Sixth Seal (Revelation 6:12)

Don’t forget about earthquakes, feds tell city

Although New York’s modern skyscrapers are less likely to be damaged in an earthquake than shorter structures, a new study suggests the East Coast is more vulnerable than previously thought. The new findings will help alter building codes.By Mark FaheyJuly 18, 2014 10:03 a.m.The U.S. Geological Survey had good and bad news for New Yorkers on Thursday. In releasing its latest set of seismic maps the agency said earthquakes are a slightly lower hazard for New York City’s skyscrapers than previously thought, but on the other hand noted that the East Coast may be able to produce larger, more dangerous earthquakes than previous assessments have indicated.The 2014 maps were created with input from hundreds of experts from across the country and are based on much stronger data than the 2008 maps, said Mark Petersen, chief of the USGS National Seismic Hazard Mapping Project. The bottom line for the nation’s largest city is that the area is at a slightly lower risk for the types of slow-shaking earthquakes that are especially damaging to tall spires of which New York has more than most places, but the city is still at high risk due to its population density and aging structures, said Mr. Petersen.“Many of the overall patterns are the same in this map as in previous maps,” said Mr. Petersen. “There are large uncertainties in seismic hazards in the eastern United States. [New York City] has a lot of exposure and some vulnerability, but people forget about earthquakes because you don’t see damage from ground shaking happening very often.”Just because they’re infrequent doesn’t mean that large and potentially disastrous earthquakes can’t occur in the area. The new maps put the largest expected magnitude at 8, significantly higher than the 2008 peak of 7.7 on a logarithmic scale.The scientific understanding of East Coast earthquakes has expanded in recent years thanks to a magnitude 5.8 earthquake in Virginia in 2011 that was felt by tens of millions of people across the eastern U.S. New data compiled by the nuclear power industry has also helped experts understand quakes.“The update shows New York at an intermediate level,” said Arthur Lerner-Lam, deputy director of Columbia’s Lamont-Doherty Earth Observatory. “You have to combine that with the exposure of buildings and people and the fragility of buildings and people. In terms of safety and economics, New York has a substantial risk.”Oddly enough, it’s not the modern tall towers that are most at risk. Those buildings become like inverted pendulums in the high frequency shakes that are more common on the East Coast than in the West. But the city’s old eight- and 10-story masonry structures could suffer in a large quake, said Mr. Lerner-Lam. Engineers use maps like those released on Thursday to evaluate the minimum structural requirements at building sites, he said. The risk of an earthquake has to be determined over the building’s life span, not year-to-year.“If a structure is going to exist for 100 years, frankly, it’s more than likely it’s going to see an earthquake over that time,” said Mr. Lerner-Lam. “You have to design for that event.”The new USGS maps will feed into the city’s building-code review process, said a spokesman for the New York City Department of Buildings. Design provisions based on the maps are incorporated into a standard by the American Society of Civil Engineers, which is then adopted by the International Building Code and local jurisdictions like New York City. New York’s current provisions are based on the 2010 standards, but a new edition based on the just-released 2014 maps is due around 2016, he said.“The standards for seismic safety in building codes are directly based upon USGS assessments of potential ground shaking from earthquakes, and have been for years,” said Jim Harris, a member and former chair of the Provisions Update Committee of the Building Seismic Safety Council, in a statement.The seismic hazard model also feeds into risk assessment and insurance policies, according to Nilesh Shome, senior director of Risk Management Solutions, the largest insurance modeler in the industry. The new maps will help the insurance industry as a whole price earthquake insurance and manage catastrophic risk, said Mr. Shome. The industry collects more than $2.5 billion in premiums for earthquake insurance each year and underwrites more than $10 trillion in building risk, he said.“People forget about history, that earthquakes have occurred in these regions in the past, and that they will occur in the future,” said Mr. Petersen. “They don’t occur very often, but the consequences and the costs can be high.”

New York Earthquake: City of the Sixth Seal (Revelation 6:12)

New York earthquake: City at risk of ‚dangerous shaking from far away‘
Joshua Nevett
Published 30th April 2018
SOME of New York City’s tallest skyscrapers are at risk of being shaken by seismic waves triggered by powerful earthquakes from miles outside the city, a natural disaster expert has warned.
Researchers believe that a powerful earthquake, magnitude 5 or greater, could cause significant damage to large swathes of NYC, a densely populated area dominated by tall buildings.
A series of large fault lines that run underneath NYC’s five boroughs, Manhattan, Brooklyn, Queens, The Bronx and Staten Island, are capable of triggering large earthquakes.
Some experts have suggested that NYC is susceptible to at least a magnitude 5 earthquake once every 100 years.
The last major earthquake measuring over magnitude 5.0 struck NYC in 1884 – meaning another one of equal size is “overdue” by 34 years, according their prediction model.
Natural disaster researcher Simon Day, of University College London, agrees with the conclusion that NYC may be more at risk from earthquakes than is usually thought.
EARTHQUAKE RISK: New York is susceptible to seismic shaking from far-away tremors
But the idea of NYC being “overdue” for an earthquake is “invalid”, not least because the “very large number of faults” in the city have individually low rates of activity, he said.
The model that predicts strong earthquakes based on timescale and stress build-up on a given fault has been “discredited”, he said.
What scientists should be focusing on, he said, is the threat of large and potentially destructive earthquakes from “much greater distances”.
The dangerous effects of powerful earthquakes from further away should be an “important feature” of any seismic risk assessment of NYC, Dr Day said.

GETTY
THE BIG APPLE: An aerial view of Lower Manhattan at dusk in New York City

USGS
RISK: A seismic hazard map of New York produced by USGS
“New York is susceptible to seismic shaking from earthquakes at much greater distances” Dr Simon Day, natural disaster researcher
This is because the bedrock underneath parts of NYC, including Long Island and Staten Island, cannot effectively absorb the seismic waves produced by earthquakes.
“An important feature of the central and eastern United States is, because the crust there is old and cold, and contains few recent fractures that can absorb seismic waves, the rate of seismic reduction is low.
Central regions of NYC, including Manhattan, are built upon solid granite bedrock; therefore the amplification of seismic waves that can shake buildings is low.
But more peripheral areas, such as Staten Island and Long Island, are formed by weak sediments, meaning seismic hazard in these areas is “very likely to be higher”, Dr Day said.
“Thus, like other cities in the eastern US, New York is susceptible to seismic shaking from earthquakes at much greater distances than is the case for cities on plate boundaries such as Tokyo or San Francisco, where the crustal rocks are more fractured and absorb seismic waves more efficiently over long distances,” Dr Day said.
In the event of a large earthquake, dozens of skyscrapers, including Chrysler Building, the Woolworth Building and 40 Wall Street, could be at risk of shaking.
“The felt shaking in New York from the Virginia earthquake in 2011 is one example,” Dr Day said.
On that occasion, a magnitude 5.8 earthquake centered 340 miles south of New York sent thousands of people running out of swaying office buildings.

USGS
FISSURES: Fault lines in New York City have low rates of activity, Dr Day said
NYC Mayor Michael Bloomberg said the city was “lucky to avoid any major harm” as a result of the quake, whose epicenter was near Louisa, Virginia, about 40 miles from Richmond.
“But an even more impressive one is the felt shaking from the 1811-1812 New Madrid earthquakes in the central Mississippi valley, which was felt in many places across a region, including cities as far apart as Detroit, Washington DC and New Orleans, and in a few places even further afield including,” Dr Day added.
“So, if one was to attempt to do a proper seismic hazard assessment for NYC, one would have to include potential earthquake sources over a wide region, including at least the Appalachian mountains to the southwest and the St Lawrence valley to the north and east.”

The Sixth Seal: More Than Just Manhattan (Revelation 6:12)

New York, NY – In a Quake, Brooklyn Would Shake More Than Manhattan
By Brooklyn Eagle
New York, NY – The last big earthquake in the New York City area, centered in New York Harbor just south of Rockaway, took place in 1884 and registered 5.2 on the Richter Scale.Another earthquake of this size can be expected and could be quite damaging, says Dr. Won-Young Kim, senior research scientist at the Lamont-Doherty Earth Observatory of Columbia University.
And Brooklyn, resting on sediment, would shake more than Manhattan, built on solid rock. “There would be more shaking and more damage,” Dr. Kim told the Brooklyn Eagle on Wednesday.
If an earthquake of a similar magnitude were to happen today near Brooklyn, “Many chimneys would topple. Poorly maintained buildings would fall down – some buildings are falling down now even without any shaking. People would not be hit by collapsing buildings, but they would be hit by falling debris. We need to get some of these buildings fixed,” he said.
But a 5.2 is “not comparable to Haiti,” he said. “That was huge.” Haiti’s devastating earthquake measured 7.0.
Brooklyn has a different environment than Haiti, and that makes all the difference, he said. Haiti is situated near tectonic plate.
“The Caribbean plate is moving to the east, while the North American plate is moving towards the west. They move about 20 mm – slightly less than an inch – every year.” The plates are sliding past each other, and the movement is not smooth, leading to jolts, he said.
While we don’t have the opportunity for a large jolt in Brooklyn, we do have small, frequent quakes of a magnitude of 2 or 3 on the Richter Scale. In 2001 alone the city experienced two quakes: one in January, measuring 2.4, and one in October, measuring 2.6. The October quake, occurring soon after Sept. 11 terrorist attacks, “caused a lot of panic,” Dr. Kim said.
“People ask me, ‘Should I get earthquake insurance?’ I tell them no, earthquake insurance is expensive. Instead, use that money to fix chimneys and other things. Rather than panicky preparations, use common sense to make things better.”
Secure bookcases to the wall and make sure hanging furniture does not fall down, Dr. Kim said. “If you have antique porcelains or dishes, make sure they’re safely stored. In California, everything is anchored to the ground.”
While a small earthquake in Brooklyn may cause panic, “In California, a quake of magnitude 2 is called a micro-quake,” he added.

The Main Cause of the Sixth Seal (Revelation 6:12)


Indian Point Energy CenterNuclear power plant in Buchanan, New YorkIndian Point Energy Center (IPEC) is a three-unit nuclear power plant station located in Buchanan, New York, just south of Peekskill. It sits on the east bank of the Hudson River, about 36 miles (58 km) north of Midtown Manhattan. The plant generates over 2,000 megawatts (MWe) of electrical power. For reference, the record peak energy consumption of New York City and Westchester County (the ConEdison Service Territory) was set during a seven-day heat wave on July 19, 2013, at 13,322 megawatts.[3] Electrical energy consumption varies greatly with time of day and season.[4]Quick Facts: Country, Location …The plant is owned and operated by Entergy Nuclear Northeast, a subsidiary of Entergy Corporation, and includes two operating Westinghouse pressurized water reactors—designated “Indian Point 2” and “Indian Point 3″—which Entergy bought from Consolidated Edison and the New York Power Authority respectively. The facility also contains the permanently shut-down Indian Point Unit 1 reactor. As of 2015, the number of permanent jobs at the Buchanan plant is approximately 1,000.The original 40-year operating licenses for units 2 and 3 expired in September 2013 and December 2015, respectively. Entergy had applied for license extensions and the Nuclear Regulatory Commission (NRC) was moving toward granting a twenty-year extension for each reactor. However, after pressure from local environmental groups and New York governor Andrew Cuomo, it was announced that the plant is scheduled to be shut down by 2021.[5] Local groups had cited increasingly frequent issues with the aging units, ongoing environmental releases, and the proximity of the plant to New York City.[6]ReactorsHistory and designThe reactors are built on land that originally housed the Indian Point Amusement Park, but was acquired by Consolidated Edison (ConEdison) on October 14, 1954.[7] Indian Point 1, built by ConEdison, was a 275-megawatt Babcock & Wilcox supplied [8] pressurized water reactor that was issued an operating license on March 26, 1962 and began operations on September 16, 1962.[9] The first core used a thorium-based fuel with stainless steel cladding, but this fuel did not live up to expectations for core life.[10] The plant was operated with uranium dioxide fuel for the remainder of its life. The reactor was shut down on October 31, 1974, because the emergency core cooling system did not meet regulatory requirements. All spent fuel was removed from the reactor vessel by January 1976, but the reactor still stands.[11] The licensee, Entergy, plans to decommission Unit 1 when Unit 2 is decommissioned.[12]The two additional reactors, Indian Point 2 and 3, are four-loop Westinghouse pressurized water reactors both of similar design. Units 2 and 3 were completed in 1974 and 1976, respectively. Unit 2 has a generating capacity of 1,032 MW, and Unit 3 has a generating capacity of 1,051 MW. Both reactors use uranium dioxide fuel of no more than 4.8% U-235 enrichment. The reactors at Indian Point are protected by containment domes made of steel-reinforced concrete that is 40 inches thick, with a carbon steel liner.[13]Nuclear capacity in New York stateUnits 2 and 3 are two of six operating nuclear energy sources in New York State. New York is one of the five largest states in terms of nuclear capacity and generation, accounting for approximately 5% of the national totals. Indian Point provides 39% of the state’s nuclear capacity. Nuclear power produces 34.2% of the state’s electricity, higher than the U.S. average of 20.6%. In 2017, Indian Point generated approximately 10% of the state’s electricity needs, and 25% of the electricity used in New York City and Westchester County.[14] Its contract with Consolidated Edison is for just 560 megawatts. The New York Power Authority, which built Unit 3, stopped buying electricity from Indian Point in 2012. NYPA supplies the subways, airports, and public schools and housing in NYC and Westchester County. Entergy sells the rest of Indian Point’s output into the NYISO administered electric wholesale markets and elsewhere in New England.[15][16][17][18] In 2013, New York had the fourth highest average electricity prices in the United States. Half of New York’s power demand is in the New York City region; about two-fifths of generation originates there.[19][20]RefuelingThe currently operating Units 2 and 3 are each refueled on a two-year cycle. At the end of each fuel cycle, one unit is brought offline for refueling and maintenance activities. On March 2, 2015, Indian Point 3 was taken offline for 23 days to perform its refueling operations. Entergy invested $50 million in the refueling and other related projects for Unit 3, of which $30 million went to employee salaries. The unit was brought back online on March 25, 2015.[21]EffectsEconomic impactA June 2015 report by a lobby group called Nuclear Energy Institute found that the operation of Indian Point generates $1.3 billion of annual economic output in local counties, $1.6 billion statewide, and $2.5 billion across the United States. In 2014, Entergy paid $30 million in state and local property taxes. The total tax revenue (direct and secondary) was nearly $340 million to local, state, and federal governments.[15] According to the Village of Buchanan budget for 2016–2017, a payment in lieu of taxes in the amount of $2.62 million was received in 2015-2016, and was projected to be $2.62 million in 2016–2017 – the majority of which can be assumed to come from the Indian Point Energy Center.[22]Over the last decade, the station has maintained a capacity factor of greater than 93 percent. This is consistently higher than the nuclear industry average and than other forms of generation. The reliability helps offset the severe price volatility of other energy sources (e.g., natural gas) and the indeterminacy of renewable electricity sources (e.g., solar, wind).[15]Indian Point directly employs about 1,000 full-time workers. This employment creates another 2,800 jobs in the five-county region, and 1,600 in other industries in New York, for a total of 5,400 in-state jobs. Additionally, another 5,300 indirect jobs are created out of state, creating a sum total of 10,700 jobs throughout the United States.[15]Environmental concernsEnvironmentalists have expressed concern about increased carbon emissions with the impending shutdown of Indian Point (generating electricity with nuclear energy creates no carbon emissions). A study undertaken by Environmental Progress found that closure of the plant would cause power emissions to jump 29% in New York, equivalent to the emissions from 1.4 million additional cars on New York roads.[23]Some environmental groups have expressed concerns about the operation of Indian Point, including radiation pollution and endangerment of wildlife, but whether Indian Point has ever posed a significant danger to wildlife or the public remains controversial. Though anti-nuclear group Riverkeeper notes “Radioactive leakage from the plant containing several radioactive isotopes, such as strontium-90, cesium-137, cobalt-60, nickel-63 and tritium, a rarely-occurring isotope of hydrogen, has flowed into groundwater that eventually enters the Hudson River in the past[24], there is no evidence radiation from the plant has ever posed a significant hazard to local residents or wildlife. In the last year[when?], nine tritium leaks have occurred, however, even at their highest levels the leaks have never exceeded one-tenth of one percent of US Nuclear Regulatory Commission limits.In February 2016, New York State Governor Andrew Cuomo called for a full investigation by state environment[25] and health officials and is partnering with organizations like Sierra Club, Riverkeepers, Hudson River Sloop Clearwater, Indian Point Safe Energy Coalition, Scenic Hudson and Physicians for Social Responsibility in seeking the permanent closure of the plant.[citation needed] However, Cuomo’s motivation for closing the plant was called into question after it was revealed two top former aides, under federal prosecution for influence-peddling, had lobbied on behalf of natural gas company Competitive Power Ventures (CPV) to kill Indian Point. In his indictment, US attorney Preet Bharara wrote “the importance of the plant [CPV’s proposed Valley Energy Center, a plant powered by natural gas] to the State depended at least in part, on whether [Indian Point] was going to be shut down.”[26]In April 2016 climate scientist James Hansen took issue with calls to shut the plant down, including those from presidential candidate Bernie Sanders. “The last few weeks have seen an orchestrated campaign to mislead the people of New York about the essential safety and importance of Indian Point nuclear plant to address climate change,” wrote Hansen, adding “Sanders has offered no evidence that NRC [U.S. Nuclear Regulatory Commission] has failed to do its job, and he has no expertise in over-riding NRC’s judgement. For the sake of future generations who could be harmed by irreversible climate change, I urge New Yorkers to reject this fear mongering and uphold science against ideology.”[27]Indian Point removes water from the nearby Hudson River. Despite the use of fish screens, the cooling system kills over a billion fish eggs and larvae annually.[28] According to one NRC report from 2010, as few as 38% of alewives survive the screens.[29] On September 14, 2015, a state hearing began in regards to the deaths of fish in the river, and possibly implementing a shutdown period from May to August. An Indian Point spokesman stated that such a period would be unnecessary, as Indian Point “is fully protective of life in the Hudson River and $75 million has been spent over the last 30 years on scientific studies demonstrating that the plant has no harmful impact to adult fish.” The hearings lasted three weeks.[30] Concerns were also raised over the planned building of new cooling towers, which would cut down forest land that is suspected to be used as breeding ground by muskrat and mink. At the time of the report, no minks or muskrats were spotted there.[29]SafetyIndian Point Energy Center has been given an incredible amount of scrutiny from the media and politicians and is regulated more heavily than various other power plants in the state of New York (i.e., by the NRC in addition to FERC, the NYSPSC, the NYISO, the NYSDEC, and the EPA). On a forced outage basis – incidents related to electrical equipment failure that force a plant stoppage – it provides a much more reliable operating history than most other power plants in New York.[31][32] Beginning at the end of 2015, Governor Cuomo began to ramp up political action against the Indian Point facility, opening an investigation with the state public utility commission, the department of health, and the department of environmental conservation.[33][34][35][30][36][37] To put the public service commission investigation in perspective: most electric outage investigations conducted by the commission are in response to outages with a known number of affected retail electric customers.[38] By November 17, 2017, the NYISO accepted Indian Point’s retirement notice.[39]In 1997, Indian Point Unit 3 was removed from the NRC’s list of plants that receive increased attention from the regulator. An engineer for the NRC noted that the plant had been experiencing increasingly fewer problems during inspections.[40] On March 10, 2009 the Indian Point Power Plant was awarded the fifth consecutive top safety rating for annual operations by the Federal regulators. According to the Hudson Valley Journal News, the plant had shown substantial improvement in its safety culture in the previous two years.[41] A 2003 report commissioned by then-Governor George Pataki concluded that the “current radiological response system and capabilities are not adequate to…protect the people from an unacceptable dose of radiation in the event of a release from Indian Point”.[42] More recently, in December 2012 Entergy commissioned a 400-page report on the estimates of evacuation times. This report, performed by emergency planning company KLD Engineering, concluded that the existing traffic management plans provided by Orange, Putnam, Rockland, and Westchester Counties are adequate and require no changes.[43] According to one list that ranks U.S. nuclear power plants by their likelihood of having a major natural disaster related incident, Indian Point is the most likely to be hit by a natural disaster, mainly an earthquake.[44][45][46][47] Despite this, the owners of the plant still say that safety is a selling point for the nuclear power plant.[48]Incidents▪ In 1973, five months after Indian Point 2 opened, the plant was shut down when engineers discovered buckling in the steel liner of the concrete dome in which the nuclear reactor is housed.[49]▪ On October 17, 1980,[50] 100,000 gallons of Hudson River water leaked into the Indian Point 2 containment building from the fan cooling unit, undetected by a safety device designed to detect hot water. The flooding, covering the first nine feet of the reactor vessel, was discovered when technicians entered the building. Two pumps that should have removed the water were found to be inoperative. NRC proposed a $2,100,000 fine for the incident.▪ In February 2000, Unit 2 experienced a Steam Generator Tube Rupture (SGTR), which allowed primary water to leak into the secondary system through one of the steam generators.[51] All four steam generators were subsequently replaced.[citation needed]▪ In 2005, Entergy workers while digging discovered a small leak in a spent fuel pool. Water containing tritium and strontium-90 was leaking through a crack in the pool building and then finding its way into the nearby Hudson River. Workers were able to keep the spent fuel rods safely covered despite the leak.[52] On March 22, 2006 The New York Times also reported finding radioactive nickel-63 and strontium in groundwater on site.[53] In 2007, a transformer at Unit 3 caught fire, and the Nuclear Regulatory Commission raised its level of inspections, because the plant had experienced many unplanned shutdowns. According to The New York Times, Indian Point “has a history of transformer problems”.[54] On April 23, 2007, the Nuclear Regulatory Commission fined the owner of the Indian Point nuclear plant $130,000 for failing to meet a deadline for a new emergency siren plan. The 150 sirens at the plant are meant to alert residents within 10 miles to a plant emergency.[55] On January 7, 2010, NRC inspectors reported that an estimated 600,000 gallons of mildly radioactive steam was intentionally vented to the atmosphere after an automatic shutdown of Unit 2. After the vent, one of the vent valves unintentionally remained slightly open for two days. The levels of tritium in the steam were within the allowable safety limits defined in NRC standards.[56] On November 7, 2010, an explosion occurred in a main transformer for Indian Point 2, spilling oil into the Hudson River.[57] Entergy later agreed to pay a $1.2 million penalty for the transformer explosion.[54] July 2013, a former supervisor, who worked at the Indian Point nuclear power plant for twenty-nine years, was arrested for falsifying the amount of particulate in the diesel fuel for the plant’s backup generators.[58] On May 9, 2015, a transformer failed at Indian Point 3, causing the automated shutdown of reactor 3. A fire that resulted from the failure was extinguished, and the reactor was placed in a safe and stable condition.[59] The failed transformer contained about 24,000 gallons of dielectric fluid, which is used as an insulator and coolant when the transformer is energized. The U.S. Coast Guard estimates that about 3,000 gallons of dielectric fluid entered the river following the failure.[60] In June 2015, a mylar balloon floated into a switchyard, causing an electrical problem resulting in the shutdown of Reactor 3.[61] In July 2015, Reactor 3 was shut down after a water pump failure.[citation needed] On December 5, 2015, Indian Point 2 was shut down after several control rods lost power.[62] On February 6, 2016, Governor Andrew Cuomo informed the public that radioactive tritium-contaminated water leaked into the groundwater at the Indian Point Nuclear facility.[25]Spent fuelIndian Point stores used fuel rods in two spent fuel pools at the facility.[52] The spent fuel pools at Indian Point are not stored under a containment dome like the reactor, but rather they are contained within an indoor 40-foot-deep pool and submerged under 27 feet of water. Water is a natural and effective barrier to radiation. The spent fuel pools at Indian Point are set in bedrock and are constructed of concrete walls that are four to six feet wide, with a quarter-inch thick stainless steel inner liner. The pools each have multiple redundant backup cooling systems.[52][63]Indian Point began dry cask storage of spent fuel rods in 2008, which is a safe and environmentally sound option according to the Nuclear Regulatory Commission.[64] Some rods have already been moved to casks from the spent fuel pools. The pools will be kept nearly full of spent fuel, leaving enough space to allow emptying the reactor completely.[65] Dry cask storage systems are designed to resist floods, tornadoes, projectiles, temperature extremes, and other unusual scenarios. The NRC requires the spent fuel to be cooled and stored in the spent fuel pool for at least five years before being transferred to dry casks.[66]Earthquake riskIn 2008, researchers from Columbia University’s Lamont-Doherty Earth Observatory located a previously unknown active seismic zone running from Stamford, Connecticut, to the Hudson Valley town of Peekskill, New York—the intersection of the Stamford-Peekskill line with the well-known Ramapo Fault—which passes less than a mile north of the Indian Point nuclear power plant.[67] The Ramapo Fault is the longest fault in the Northeast, but scientists dispute how active this roughly 200-million-year-old fault really is. Many earthquakes in the state’s surprisingly varied seismic history are believed to have occurred on or near it. Visible at ground level, the fault line likely extends as deep as nine miles below the surface.[68]In July 2013, Entergy engineers reassessed the risk of seismic damage to Unit 3 and submitted their findings in a report to the NRC. It was found that risk leading to reactor core damage is 1 in 106,000 reactor years using U.S. Geological Survey data; and 1 in 141,000 reactor years using Electric Power Research Institute data. Unit 3’s previous owner, the New York Power Authority, had conducted a more limited analysis in the 1990s than Unit 2’s previous owner, Con Edison, leading to the impression that Unit 3 had fewer seismic protections than Unit 2. Neither submission of data from the previous owners was incorrect.[69]According to a company spokesman, Indian Point was built to withstand an earthquake of 6.1 on the Richter scale.[70] Entergy executives have also noted “that Indian Point had been designed to withstand an earthquake much stronger than any on record in the region, though not one as powerful as the quake that rocked Japan.”[71]The Nuclear Regulatory Commission’s estimate of the risk each year of an earthquake intense enough to cause core damage to the reactor at Indian Point was Reactor 2: 1 in 30,303; Reactor 3: 1 in 10,000, according to an NRC study published in August 2010. Msnbc.com reported based on the NRC data that “Indian Point nuclear reactor No. 3 has the highest risk of earthquake damage in the country, according to new NRC risk estimates provided to msnbc.com.” According to the report, the reason is that plants in known earthquake zones like California were designed to be more quake-resistant than those in less affected areas like New York.[72][73] The NRC did not dispute the numbers but responded in a release that “The NRC results to date should not be interpreted as definitive estimates of seismic risk,” because the NRC does not rank plants by seismic risk.[74]IPEC Units 2 and 3 both operated at 100% full power before, during, and after the Virginia earthquake on August 23, 2011. A thorough inspection of both units by plant personnel immediately following this event verified no significant damage occurred at either unit.Emergency planningThe Nuclear Regulatory Commission defines two emergency planning zones around nuclear power plants: a plume exposure pathway zone with a radius of 10 miles (16 km), concerned primarily with exposure to, and inhalation of, airborne radioactive contamination, and an ingestion pathway zone of about 50 miles (80 km), concerned primarily with ingestion of food and liquid contaminated by radioactivity.[75]According to an analysis of U.S. Census data for MSNBC, the 2010 U.S. population within 10 miles (16 km) of Indian Point was 272,539, an increase of 17.6 percent during the previous ten years. The 2010 U.S. population within 50 miles (80 km) was 17,220,895, an increase of 5.1 percent since 2000. Cities within 50 miles include New York (41 miles to city center); Bridgeport, Conn. (40 miles); Newark, N.J. (39 miles); and Stamford, Conn. (24 miles).[76]In the wake of the 2011 Fukushima incident in Japan, the State Department recommended that any Americans in Japan stay beyond fifty miles from the area.[citation needed] Columnist Peter Applebome, writing in The New York Times, noted that such an area around Indian Point would include “almost all of New York City except for Staten Island; almost all of Nassau County and much of Suffolk County; all of Bergen County, N.J.; all of Fairfield, Conn.” He quotes Purdue University professor Daniel Aldrich as saying “Many scholars have already argued that any evacuation plans shouldn’t be called plans, but rather “fantasy documents””.[42]The current 10-mile plume-exposure pathway Emergency Planning Zone (EPZ) is one of two EPZs intended to facilitate a strategy for protective action during an emergency and comply with NRC regulations. “The exact size and shape of each EPZ is a result of detailed planning which includes consideration of the specific conditions at each site, unique geographical features of the area, and demographic information. This preplanned strategy for an EPZ provides a substantial basis to support activity beyond the planning zone in the extremely unlikely event it would be needed.”[77]In an interview, Entergy executives said they doubt that the evacuation zone would be expanded to reach as far as New York City.[71]Indian Point is protected by federal, state, and local law enforcement agencies, including a National Guard base within a mile of the facility, as well as by private off-site security forces.[78]During the September 11 attacks, American Airlines Flight 11 flew near the Indian Point Energy Center en route to the World Trade Center. Mohamed Atta, one of the 9/11 hijackers/plotters, had considered nuclear facilities for targeting in a terrorist attack.[79] Entergy says it is prepared for a terrorist attack, and asserts that a large airliner crash into the containment building would not cause reactor damage.[80] Following 9/11 the NRC required operators of nuclear facilities in the U.S. to examine the effects of terrorist events and provide planned responses.[81] In September 2006, the Indian Point Security Department successfully completed mock assault exercises required by the Nuclear Regulatory Commission.[citation needed] However, according to environmental group Riverkeeper, these NRC exercises are inadequate because they do not envision a sufficiently large group of attackers.[citation needed]According to The New York Times, fuel stored in dry casks is less vulnerable to terrorist attack than fuel in the storage pools.[65]RecertificationUnits 2 and 3 were both originally licensed by the NRC for 40 years of operation. The NRC limits commercial power reactor licenses to an initial 40 years, but also permits such licenses to be renewed. This original 40-year term for reactor licenses was based on economic and antitrust considerations, not on limitations of nuclear technology. Due to this selected period, however, some structures and components may have been engineered on the basis of an expected 40-year service life.[82] The original federal license for Unit Two expired on September 28, 2013,[83][84] and the license for Unit Three was due to expire in December 2015.[85] On April 30, 2007, Entergy submitted an application for a 20-year renewal of the licenses for both units. On May 2, 2007, the NRC announced that this application is available for public review.[86] Because the owner submitted license renewal applications at least five years prior to the original expiration date, the units are allowed to continue operation past this date while the NRC considers the renewal application.On September 23, 2007, the antinuclear group Friends United for Sustainable Energy (FUSE) filed legal papers with the NRC opposing the relicensing of the Indian Point 2 reactor. The group contended that the NRC improperly held Indian Point to less stringent design requirements. The NRC responded that the newer requirements were put in place after the plant was complete.[87]On December 1, 2007, Westchester County Executive Andrew J. Spano, New York Attorney General Andrew Cuomo, and New York Governor Eliot Spitzer called a press conference with the participation of environmental advocacy groups Clearwater and Riverkeeper to announce their united opposition to the re-licensing of the Indian Point nuclear power plants. The New York State Department of Environmental Conservation and the Office of the Attorney General requested a hearing as part of the process put forth by the Nuclear Regulatory Commission.[citation needed] In September 2007 The New York Times reported on the rigorous legal opposition Entergy faces in its request for a 20-year licensing extension for Indian Point Nuclear Reactor 2.[87]A water quality certificate is a prerequisite for a twenty-year renewal by the NRC.[citation needed] On April 3, 2010, the New York State Department of Environmental Conservation ruled that Indian Point violates the federal Clean Water Act,[88] because “the power plant’s water-intake system kills nearly a billion aquatic organisms a year, including the shortnose sturgeon, an endangered species.”[citation needed] The state is demanding that Entergy constructs new closed-cycle cooling towers at a cost of over $1 billion, a decision that will effectively close the plant for nearly a year. Regulators denied Entergy’s request to install fish screens that they said would improve fish mortality more than new cooling towers. Anti-nuclear groups and environmentalists have in the past tried to close the plant,[citation needed] which is in a more densely populated area than any of the 66 other nuclear plant sites in the US.[citation needed] Opposition to the plant[from whom?] increased after the September 2001 terror attacks,[citation needed] when one of the hijacked jets flew close to the plant on its way to the World Trade Center.[citation needed] Public worries also increased after the 2011 Japanese Fukushima Daiichi nuclear disaster and after a report highlighting the Indian Point plant’s proximity to the Ramapo Fault.[citation needed]Advocates of recertifying Indian Point include former New York City mayors Michael Bloomberg and Rudolph W. Giuliani. Bloomberg says that “Indian Point is critical to the city’s economic viability”.[89] The New York Independent System Operator maintains that in the absence of Indian Point, grid voltages would degrade, which would limit the ability to transfer power from upstate New York resources through the Hudson Valley to New York City.[90]As the current governor, Andrew Cuomo continues to call for closure of Indian Point.[91] In late June 2011, a Cuomo advisor in a meeting with Entergy executives informed them for the first time directly of the Governor’s intention to close the plant, while the legislature approved a bill to streamline the process of siting replacement plants.[92]Nuclear energy industry figures and analysts responded to Cuomo’s initiative by questioning whether replacement electrical plants could be certified and built rapidly enough to replace Indian Point, given New York state’s “cumbersome regulation process”, and also noted that replacement power from out of state sources will be hard to obtain because New York has weak ties to generation capacity in other states.[citation needed] They said that possible consequences of closure will be a sharp increase in the cost of electricity for downstate users and even “rotating black-outs”.[93]Several members of the House of Representatives representing districts near the plant have also opposed recertification, including Democrats Nita Lowey, Maurice Hinchey, and Eliot Engel and then Republican member Sue Kelly.[94]In November 2016 the New York Court of Appeals ruled that the application to renew the NRC operating licences must be reviewed against the state’s coastal management program, which The New York State Department of State had already decided was inconsistent with coastal management requirements. Entergy has filed a lawsuit regarding the validity of Department of State’s decision.[95]ClosureBeginning at the end of 2015, Governor Cuomo began to ramp up political action against the Indian Point facility, opening investigations with the state public utility commission, the department of health and the department of environmental conservation.[33][34][35][30][36][37] To put the public service commission investigation in perspective, most electric outage investigations conducted by the commission are in response to outages with a known number of affected retail electric customers.[38] By November 17, 2017, the NYISO accepted Indian Point’s retirement notice.[39]In January 2017, the governor’s office announced closure by 2020-21.[96] The closure, along with pollution control, challenges New York’s ability to be supplied.[citation needed] Among the solution proposals are storage, renewables (solar and wind), a new transmission cables from Canada [97][98] and a 650MW natural gas plant located in Wawayanda, New York.[99] There was also a 1,000 MW merchant HVDC transmission line proposed in 2013 to the public service commission that would have interconnected at Athens, New York and Buchanan, New York, however this project was indefinitely stalled when its proposed southern converter station site was bought by the Town of Cortlandt in a land auction administered by Con Edison.[100][101][102] As of October 1, 2018, the 650 MW plant built in Wawayanda, New York, by CPV Valley, is operating commercially.[103] The CPV Valley plant has been associated with Governor Cuomo’s close aid, Joe Percoco, and the associated corruption trial.[104] Another plant being built, Cricket Valley Energy Center, rated at 1,100 MW, is on schedule to provide energy by 2020 in Dover, New York.[105] An Indian Point contingency plan, initiated in 2012 by the NYSPSC under the administration of Cuomo, solicited energy solutions from which a Transmission Owner Transmission Solutions (TOTS) plan was selected. The TOTS projects provide 450 MW[106] of additional transfer capability across a NYISO defined electric transmission corridor in the form of three projects: series compensation at a station in Marcy, New York, reconductoring a transmission line, adding an additional transmission line, and “unbottling” Staten Island capacity. These projects, with the exception of part of the Staten Island “unbottling” were in service by mid-2016. The cost of the TOTS projects are distributed among various utilities in their rate cases before the public service commission and the cost allocation amongst themselves was approved by FERC. NYPA and LIPA are also receiving a portion. The cost of the TOTS projects has been estimated in the range of $27 million to $228 million.[107][108][109][110][111] An energy highway initiative was also prompted by this order (generally speaking, additional lines on the Edic-Pleasant Valley and the Oakdale-Fraser transmission corridors) which is still going through the regulatory process in both the NYISO and NYSPSC.Under the current plan, one reactor is scheduled to be shut down in April 2020 and the second by April 2021.[112] A report by the New York Building Congress, a construction industry association, has said that NYC will need additional natural gas pipelines to accommodate the city’s increasing demand for energy. Environmentalists have argued that the power provided by Indian point can be replaced by renewable energy, combined with conservation measures and improvements to the efficiency of the electrical grid.[113]

We really are due for the sixth seal: Revelation 6:12

Opinion/Al Southwick: Could an earthquake really rock New England? We are 265 years overdue

On Nov. 8, a 3.6 magnitude earthquake struck Buzzard’s Bay off the coast of New Bedford. Reverberations were felt up to 100 miles away, across Massachusetts, Rhode Island, and parts of Connecticut and New York. News outlets scrambled to interview local residents who felt the ground shake their homes. Seismologists explained that New England earthquakes, while uncommon and usually minor, are by no means unheard of.

The last bad one we had took place on Nov. 18, 1755, a date long remembered.

It’s sometimes called the Boston Earthquake and sometimes the Cape Ann Earthquake. Its epicenter is thought to have been in the Atlantic Ocean about 25 miles east of Gloucester. Estimates say that it would have registered between 6.0 and 6.3 on the modern Richter scale. It was an occasion to remember as chronicled by John E. Ebel, director of the Weston observatory of Boston College:

“At about 4:30 in the morning on 18 November, 1755, a strong earthquake rocked the New England area. Observers reported damage to chimneys, brick buildings and stone walls in coastal communities from Portland, Maine to south of Boston … Chimneys were also damaged as far away as Springfield, Massachusetts, and New Haven, Connecticut. The earthquake was felt at Halifax, Nova Scotia to the northeast, Lake Champlain to the northwest, and Winyah, South Carolina to the southwest. The crew of a ship in deep water about 70 leagues east of Boston thought it had run aground and only realized it had felt an earthquake after it arrived at Boston later that same day.

“The 1755 earthquake rocked Boston, with the shaking lasting more than a minute. According to contemporary reports, as many as 1,500 chimneys were shattered or thrown down in part, the gable ends of about 15 brick buildings were broken out, and some church steeples ended up tilted due to the shaking. Falling chimney bricks created holes in the roofs of some houses. Some streets, particularly those on manmade ground along the water, were so covered with bricks and debris that passage by horse-drawn carriage was impossible. Many homes lost china and glassware that was thrown from shelves and shattered. A distiller’s cistern filled with liquor broke apart and lost its contents.”

We don’t have many details of the earthquake’s impact here, there being no newspaper in Worcester County at that time. We do know that one man, Christian Angel, working in a “silver” mine in Sterling, was buried alive when the ground shook. He is the only known fatality in these parts. We can assume that, if the quake shook down chimneys in Springfield and New Haven, it did even more damage hereabouts. We can imagine the cries of alarm and the feeling of panic as trees swayed violently, fields and meadows trembled underfoot and pottery fell off shelves and crashed below.

The Boston Earthquake was an aftershock from the gigantic Lisbon Earthquake that had leveled Lisbon, Portugal, a few days before. That cataclysm, estimated as an 8 or 9 on the modern Richter scale, was the most devastating natural catastrophe to hit western Europe since Roman times. The first shock struck on Nov. 1, at about 9 in the morning.

According to one account: ”Suddenly the city began to shudder violently, its tall medieval spires waving like a cornfield in the breeze … In the ancient cathedral, the Basilica de Santa Maria, the nave rocked and the massive chandeliers began swinging crazily. . . . Then came a second, even more powerful shock. And with it, the ornate façade of every great building in the square … broke away and cascaded forward.”

Until that moment, Lisbon had been one of the leading cities in western Europe, right up there with London and Paris. With 250,000 people, it was a center of culture, financial activity and exploration. Within minutes it was reduced to smoky, dusty rubble punctuated by human groans and screams. An estimated 60,000 to 100,000 lost their lives.

Since then, New England has been mildly shaken by quakes from time to time. One series of tremors on March 1, 1925, was felt throughout Worcester County, from Fitchburg to Worcester, and caused a lot of speculation.

What if another quake like that in 1755 hit New England today? What would happen? That question was studied 15 years ago by the Massachusetts Civil Defense Agency. Its report is sobering:

“The occurrence of a Richter magnitude 6.25 earthquake off Cape Ann, Massachusetts … would cause damage in the range of 2 to 10 billion dollars … in the Boston metropolitan area (within Route 128) due to ground shaking, with significant additional losses due to secondary effects such as soil liquefaction failures, fires and economic interruptions. Hundreds of deaths and thousands of major and minor injuries would be expected … Thousands of people could be displaced from their homes … Additional damage may also be experienced outside the 128 area, especially closer to the earthquake epicenter.”

So even if we don’t worry much about volcanoes, we know that hurricanes and tornadoes are always possible. As for earthquakes, they may not happen in this century or even in this millennium, but it is sobering to think that if the tectonic plates under Boston and Gloucester shift again, we could see a repeat of 1755.

Don’t Forget About the Sixth Seal (Revelation 6:12)

Don’t forget about earthquakes, feds tell city

Although New York’s modern skyscrapers are less likely to be damaged in an earthquake than shorter structures, a new study suggests the East Coast is more vulnerable than previously thought. The new findings will help alter building codes.By Mark FaheyJuly 18, 2014 10:03 a.m.The U.S. Geological Survey had good and bad news for New Yorkers on Thursday. In releasing its latest set of seismic maps the agency said earthquakes are a slightly lower hazard for New York City’s skyscrapers than previously thought, but on the other hand noted that the East Coast may be able to produce larger, more dangerous earthquakes than previous assessments have indicated.The 2014 maps were created with input from hundreds of experts from across the country and are based on much stronger data than the 2008 maps, said Mark Petersen, chief of the USGS National Seismic Hazard Mapping Project. The bottom line for the nation’s largest city is that the area is at a slightly lower risk for the types of slow-shaking earthquakes that are especially damaging to tall spires of which New York has more than most places, but the city is still at high risk due to its population density and aging structures, said Mr. Petersen.“Many of the overall patterns are the same in this map as in previous maps,” said Mr. Petersen. “There are large uncertainties in seismic hazards in the eastern United States. [New York City] has a lot of exposure and some vulnerability, but people forget about earthquakes because you don’t see damage from ground shaking happening very often.”Just because they’re infrequent doesn’t mean that large and potentially disastrous earthquakes can’t occur in the area. The new maps put the largest expected magnitude at 8, significantly higher than the 2008 peak of 7.7 on a logarithmic scale.The scientific understanding of East Coast earthquakes has expanded in recent years thanks to a magnitude 5.8 earthquake in Virginia in 2011 that was felt by tens of millions of people across the eastern U.S. New data compiled by the nuclear power industry has also helped experts understand quakes.“The update shows New York at an intermediate level,” said Arthur Lerner-Lam, deputy director of Columbia’s Lamont-Doherty Earth Observatory. “You have to combine that with the exposure of buildings and people and the fragility of buildings and people. In terms of safety and economics, New York has a substantial risk.”Oddly enough, it’s not the modern tall towers that are most at risk. Those buildings become like inverted pendulums in the high frequency shakes that are more common on the East Coast than in the West. But the city’s old eight- and 10-story masonry structures could suffer in a large quake, said Mr. Lerner-Lam. Engineers use maps like those released on Thursday to evaluate the minimum structural requirements at building sites, he said. The risk of an earthquake has to be determined over the building’s life span, not year-to-year.“If a structure is going to exist for 100 years, frankly, it’s more than likely it’s going to see an earthquake over that time,” said Mr. Lerner-Lam. “You have to design for that event.”The new USGS maps will feed into the city’s building-code review process, said a spokesman for the New York City Department of Buildings. Design provisions based on the maps are incorporated into a standard by the American Society of Civil Engineers, which is then adopted by the International Building Code and local jurisdictions like New York City. New York’s current provisions are based on the 2010 standards, but a new edition based on the just-released 2014 maps is due around 2016, he said.“The standards for seismic safety in building codes are directly based upon USGS assessments of potential ground shaking from earthquakes, and have been for years,” said Jim Harris, a member and former chair of the Provisions Update Committee of the Building Seismic Safety Council, in a statement.The seismic hazard model also feeds into risk assessment and insurance policies, according to Nilesh Shome, senior director of Risk Management Solutions, the largest insurance modeler in the industry. The new maps will help the insurance industry as a whole price earthquake insurance and manage catastrophic risk, said Mr. Shome. The industry collects more than $2.5 billion in premiums for earthquake insurance each year and underwrites more than $10 trillion in building risk, he said.“People forget about history, that earthquakes have occurred in these regions in the past, and that they will occur in the future,” said Mr. Petersen. “They don’t occur very often, but the consequences and the costs can be high.”

The Sixth Seal Will be in New York (Revelation 6:12)

New York,Earthquake,Sixth Seal,revelation 6,nyc,andrewtheprophet,Andrew the Prophet,

Earthquakes Can Happen in More Places Than You ThinkBy Simon WorrallPUBLISHED AUGUST 26, 2017Half a million earthquakes occur worldwide each year, according to an estimate by the U.S. Geological Survey (USGS). Most are too small to rattle your teacup. But some, like the 2011 quake off the coast of Japan or last year’s disaster in Italy, can level high-rise buildings, knock out power, water and communications, and leave a lifelong legacy of trauma for those unlucky enough to be caught in them.In the U.S., the focus is on California’s San Andreas fault, which geologists suggest has a nearly one-in-five chance of causing a major earthquake in the next three decades. But it’s not just the faults we know about that should concern us, says Kathryn Miles, author of Quakeland: On the Road to America’s Next Devastating Earthquake. As she explained when National Geographic caught up with her at her home in Portland, Maine, there’s a much larger number of faults we don’t know about—and fracking is only adding to the risks.When it comes to earthquakes, there is really only one question everyone wants to know: When will the big one hit California?That’s the question seismologists wish they could answer, too! One of the most shocking and surprising things for me is just how little is actually known about this natural phenomenon. The geophysicists, seismologists, and emergency managers that I spoke with are the first to say, “We just don’t know!”What we can say is that it is relatively certain that a major earthquake will happen in California in our lifetime. We don’t know where or when. An earthquake happening east of San Diego out in the desert is going to have hugely different effects than that same earthquake happening in, say, Los Angeles. They’re both possible, both likely, but we just don’t know.One of the things that’s important to understand about San Andreas is that it’s a fault zone. As laypeople we tend to think about it as this single crack that runs through California and if it cracks enough it’s going to dump the state into the ocean. But that’s not what’s happening here. San Andreas is a huge fault zone, which goes through very different types of geological features. As a result, very different types of earthquakes can happen in different places.There are other places around the country that are also well overdue for an earthquake. New York City has historically had a moderate earthquake approximately every 100 years. If that is to be trusted, any moment now there will be another one, which will be devastating for that city.As Charles Richter, inventor of the Richter Scale, famously said, “Only fools, liars and charlatans predict earthquakes.” Why are earthquakes so hard to predict? After all, we have sent rockets into space and plumbed the depths of the ocean.You’re right: We know far more about distant galaxies than we do about the inner workings of our planet. The problem is that seismologists can’t study an earthquake because they don’t know when or where it’s going to happen. It could happen six miles underground or six miles under the ocean, in which case they can’t even witness it. They can go back and do forensic, post-mortem work. But we still don’t know where most faults lie. We only know where a fault is after an earthquake has occurred. If you look at the last 100 years of major earthquakes in the U.S., they’ve all happened on faults we didn’t even know existed.Earthquakes 101Earthquakes are unpredictable and can strike with enough force to bring buildings down. Find out what causes earthquakes, why they’re so deadly, and what’s being done to help buildings sustain their hits.Fracking is a relatively new industry. Many people believe that it can cause what are known as induced earthquakes. What’s the scientific consensus?The scientific consensus is that a practice known as wastewater injection undeniably causes earthquakes when the geological features are conducive. In the fracking process, water and lubricants are injected into the earth to split open the rock, so oil and natural gas can be retrieved. As this happens, wastewater is also retrieved and brought back to the surface.You Might Also LikeDifferent states deal with this in different ways. Some states, like Pennsylvania, favor letting the wastewater settle in aboveground pools, which can cause run-off contamination of drinking supplies. Other states, like Oklahoma, have chosen to re-inject the water into the ground. And what we’re seeing in Oklahoma is that this injection is enough to shift the pressure inside the earth’s core, so that daily earthquakes are happening in communities like Stillwater. As our technology improves, and both our ability and need to extract more resources from the earth increases, our risk of causing earthquakes will also rise exponentially.After Fukushima, the idea of storing nuclear waste underground cannot be guaranteed to be safe. Yet President Trump has recently green-lighted new funds for the Yucca Mountain site in Nevada. Is that wise?The issue with Fukushima was not about underground nuclear storage but it is relevant. The Tohoku earthquake, off the coast of Japan, was a massive, 9.0 earthquake—so big that it shifted the axis of the earth and moved the entire island of Japan some eight centimeters! It also created a series of tsunamis, which swamped the Fukushima nuclear power plant to a degree the designers did not believe was possible.Here in the U.S., we have nuclear plants that are also potentially vulnerable to earthquakes and tsunamis, above all on the East Coast, like Pilgrim Nuclear, south of Boston, or Indian Point, north of New York City. Both of these have been deemed by the USGS to have an unacceptable level of seismic risk. [Both are scheduled to close in the next few years.]Yucca Mountain is meant to address our need to store the huge amounts of nuclear waste that have been accumulating for more than 40 years. Problem number one is getting it out of these plants. We are going to have to somehow truck or train these spent fuel rods from, say, Boston, to a place like Yucca Mountain, in Nevada. On the way it will have to go through multiple earthquake zones, including New Madrid, which is widely considered to be one of the country’s most dangerous earthquake zones.Yucca Mountain itself has had seismic activity. Ultimately, there’s no great place to put nuclear waste—and there’s no guarantee that where we do put it is going to be safe.The psychological and emotional effects of an earthquake are especially harrowing. Why is that?This is a fascinating and newly emerging subfield within psychology, which looks at the effects of natural disasters on both our individual and collective psyches. Whenever you experience significant trauma, you’re going to see a huge increase in PTSD, anxiety, depression, suicide, and even violent behaviors.What seems to make earthquakes particularly pernicious is the surprise factor. A tornado will usually give people a few minutes, if not longer, to prepare; same thing with hurricanes. But that doesn’t happen with an earthquake. There is nothing but profound surprise. And the idea that the bedrock we walk and sleep upon can somehow become liquid and mobile seems to be really difficult for us to get our heads around.Psychologists think that there are two things happening. One is a PTSD-type loop where our brain replays the trauma again and again, manifesting itself in dreams or panic attacks during the day. But there also appears to be a physiological effect as well as a psychological one. If your readers have ever been at sea for some time and then get off the ship and try to walk on dry land, they know they will look like drunkards. [Laughs] The reason for this is that the inner ear has habituated itself to the motion of the ship. We think the inner ear does something similar in the case of earthquakes, in an attempt to make sense of this strange, jarring movement.After the Abruzzo quake in Italy, seven seismologists were actually tried and sentenced to six years in jail for failing to predict the disaster. Wouldn’t a similar threat help improve the prediction skills of American seismologists?[Laughs] The scientific community was uniform in denouncing that action by the Italian government because, right now, earthquakes are impossible to predict. But the question of culpability is an important one. To what degree do we want to hold anyone responsible? Do we want to hold the local meteorologist responsible if he gets the weather forecast wrong? [Laughs]What scientists say—and I don’t think this is a dodge on their parts—is, “Predicting earthquakes is the Holy Grail; it’s not going to happen in our lifetime. It may never happen.” What we can do is work on early warning systems, where we can at least give people 30 or 90 seconds to make a few quick decisive moves that could well save your life. We have failed to do that. But Mexico has had one in place for years!There is some evidence that animals can predict earthquakes. Is there any truth to these theories?All we know right now is anecdotal information because this is so hard to test for. We don’t know where the next earthquake is going to be so we can’t necessarily set up cameras and observe the animals there. So we have to rely on these anecdotal reports, say, of reptiles coming out of the ground prior to a quake. The one thing that was recorded here in the U.S. recently was that in the seconds before an earthquake in Oklahoma huge flocks of birds took flight. Was that coincidence? Related? We can’t draw that correlation yet.One of the fascinating new approaches to prediction is the MyQuake app. Tell us how it works—and why it could be an especially good solution for Third World countries.The USGS desperately wants to have it funded. The reluctance appears to be from Congress. A consortium of universities, in conjunction with the USGS, has been working on some fascinating tools. One is a dense network of seismographs that feed into a mainframe computer, which can take all the information and within nanoseconds understand that an earthquake is starting.MyQuake is an app where you can get up to date information on what’s happening around the world. What’s fascinating is that our phones can also serve as seismographs. The same technology that knows which way your phone is facing, and whether it should show us an image in portrait or landscape, registers other kinds of movement. Scientists at UC Berkeley are looking to see if they can crowd source that information so that in places where we don’t have a lot of seismographs or measuring instruments, like New York City or Chicago or developing countries like Nepal, we can use smart phones both to record quakes and to send out early warning notices to people.You traveled all over the U.S. for your research. Did you return home feeling safer?I do not feel safer in the sense that I had no idea just how much risk regions of this country face on a daily basis when it comes to seismic hazards. We tend to think of this as a West Coast problem but it’s not! It’s a New York, Memphis, Seattle, or Phoenix problem. Nearly every major urban center in this country is at risk of a measurable earthquake.What I do feel safer about is knowing what I can do as an individual. I hope that is a major take-home message for people who read the book. There are so many things we should be doing as individuals, family members, or communities to minimize this risk: simple things from having a go-bag and an emergency plan amongst the family to larger things like building codes.We know that a major earthquake is going to happen. It’s probably going to knock out our communications lines. Phones aren’t going to work, Wi-Fi is going to go down, first responders are not going to be able to get to people for quite some time. So it is beholden on all of us to make sure we can survive until help can get to us.This interview was edited for length and clarity.