Brace Yourselves for the Sixth Seal (Revelation 6)

https://i1.wp.com/www.ldeo.columbia.edu/news/images/nj-quake-030201.gif
Brace Yourselves, New Yorkers, You’re Due for a Major Quake
A couple of hundred thousand years ago, an M 7.2 earthquake shook what is now New Hampshire. Just a few thousand years ago, an M 7.5 quake ruptured just off the coast of Massachusetts. And then there’s New York.
Since the first western settlers arrived there, the state has witnessed 200 quakes of magnitude 2.0 or greater, making it the third most seismically active state east of the Mississippi (Tennessee and South Carolina are ranked numbers one and two, respectively). About once a century, New York has also experienced an M 5.0 quake capable of doing real damage.
The most recent one near New York City occurred in August of 1884. Centered off Long Island’s Rockaway Beach, it was felt over 70,000 square miles. It also opened enormous crevices near the Brooklyn reservoir and knocked down chimneys and cracked walls in Pennsylvania and Connecticut. Police on the Brooklyn Bridge said it swayed “as if struck by a hurricane” and worried the bridge’s towers would collapse. Meanwhile, residents throughout New York and New Jersey reported sounds that varied from explosions to loud rumblings, sometimes to comic effect. At the funeral of Lewis Ingler, a small group of mourners were watching as the priest began to pray. The quake cracked an enormous mirror behind the casket and knocked off a display of flowers that had been resting on top of it. When it began to shake the casket’s silver handles, the mourners decided the unholy return of Lewis Ingler was more than they could take and began flinging themselves out windows and doors.
Not all stories were so light. Two people died during the quake, both allegedly of fright. Out at sea, the captain of the brig Alice felt a heavy lurch that threw him and his crew, followed by a shaking that lasted nearly a minute. He was certain he had hit a wreck and was taking on water.
A day after the quake, the editors of The New York Times sought to allay readers’ fear. The quake, they said, was an unexpected fluke never to be repeated and not worth anyone’s attention: “History and the researches of scientific men indicate that great seismic disturbances occur only within geographical limits that are now well defined,” they wrote in an editorial. “The northeastern portion of the United States . . . is not within those limits.” The editors then went on to scoff at the histrionics displayed by New York residents when confronted by the quake: “They do not stop to reason or to recall the fact that earthquakes here are harmless phenomena. They only know that the solid earth, to whose immovability they have always turned with confidence when everything else seemed transitory, uncertain, and deceptive, is trembling and in motion, and the tremor ceases long before their disturbed minds become tranquil.”
That’s the kind of thing that drives Columbia’s Heather Savage nuts.
New York, she says, is positively vivisected by faults. Most of them fall into two groups—those running northeast and those running northwest. Combined they create a brittle grid underlying much of Manhattan.
Across town, Charles Merguerian has been studying these faults the old‐fashioned way: by getting down and dirty underground. He’s spent the past forty years sloshing through some of the city’s muckiest places: basements and foundations, sewers and tunnels, sometimes as deep as 750 feet belowground. His tools down there consist primarily of a pair of muck boots, a bright blue hard hat, and a pickax. In public presentations, he claims he is also ably abetted by an assistant hamster named Hammie, who maintains his own website, which includes, among other things, photos of the rodent taking down Godzilla.
That’s just one example why, if you were going to cast a sitcom starring two geophysicists, you’d want Savage and Merguerian to play the leading roles. Merguerian is as eccentric and flamboyant as Savage is earnest and understated. In his press materials, the former promises to arrive at lectures “fully clothed.” Photos of his “lab” depict a dingy porta‐john in an abandoned subway tunnel. He actively maintains an archive of vintage Chinese fireworks labels at least as extensive as his list of publications, and his professional website includes a discography of blues tunes particularly suitable for earthquakes. He calls female science writers “sweetheart” and somehow manages to do so in a way that kind of makes them like it (although they remain nevertheless somewhat embarrassed to admit it).
It’s Merguerian’s boots‐on‐the‐ground approach that has provided much of the information we need to understand just what’s going on underneath Gotham. By his count, Merguerian has walked the entire island of Manhattan: every street, every alley. He’s been in most of the tunnels there, too. His favorite one by far is the newest water tunnel in western Queens. Over the course of 150 days, Merguerian mapped all five miles of it. And that mapping has done much to inform what we know about seismicity in New York.
Most importantly, he says, it provided the first definitive proof of just how many faults really lie below the surface there. And as the city continues to excavate its subterranean limits, Merguerian is committed to following closely behind. It’s a messy business.
Down below the city, Merguerian encounters muck of every flavor and variety. He power‐washes what he can and relies upon a diver’s halogen flashlight and a digital camera with a very, very good flash to make up the difference. And through this process, Merguerian has found thousands of faults, some of which were big enough to alter the course of the Bronx River after the last ice age.
His is a tricky kind of detective work. The center of a fault is primarily pulverized rock. For these New York faults, that gouge was the very first thing to be swept away by passing glaciers. To do his work, then, he’s primarily looking for what geologists call “offsets”—places where the types of rock don’t line up with one another. That kind of irregularity shows signs of movement over time—clear evidence of a fault.
Merguerian has found a lot of them underneath New York City.
These faults, he says, do a lot to explain the geological history of Manhattan and the surrounding area. They were created millions of years ago, when what is now the East Coast was the site of a violent subduction zone not unlike those present now in the Pacific’s Ring of Fire.
Each time that occurred, the land currently known as the Mid‐Atlantic underwent an accordion effect as it was violently folded into itself again and again. The process created immense mountains that have eroded over time and been further scoured by glaciers. What remains is a hodgepodge of geological conditions ranging from solid bedrock to glacial till to brittle rock still bearing the cracks of the collision. And, says Merguerian, any one of them could cause an earthquake.
You don’t have to follow him belowground to find these fractures. Even with all the development in our most built‐up metropolis, evidence of these faults can be found everywhere—from 42nd Street to Greenwich Village. But if you want the starkest example of all, hop the 1 train at Times Square and head uptown to Harlem. Not far from where the Columbia University bus collects people for the trip to the Lamont‐Doherty Earth Observatory, the subway tracks seem to pop out of the ground onto a trestle bridge before dropping back down to earth. That, however, is just an illusion. What actually happens there is that the ground drops out below the train at the site of one of New York’s largest faults. It’s known by geologists in the region as the Manhattanville or 125th Street Fault, and it runs all the way across the top of Central Park and, eventually, underneath Long Island City. Geologists have known about the fault since 1939, when the city undertook a massive subway mapping project, but it wasn’t until recently that they confirmed its potential for a significant quake.
In our lifetimes, a series of small earthquakes have been recorded on the Manhattanville Fault including, most recently, one on October 27, 2001. Its epicenter was located around 55th and 8th—directly beneath the original Original Soupman restaurant, owned by restaurateur Ali Yeganeh, the inspiration for Seinfeld’s Soup Nazi. That fact delighted sitcom fans across the country, though few Manhattanites were in any mood to appreciate it.
The October 2001 quake itself was small—about M 2.6—but the effect on residents there was significant. Just six weeks prior, the city had been rocked by the 9/11 terrorist attacks that brought down the World Trade Center towers. The team at Lamont‐Doherty has maintained a seismic network in the region since the ’70s. They registered the collapse of the first tower at M 2.1. Half an hour later, the second tower crumbled with even more force and registered M 2.3. In a city still shocked by that catastrophe, the early‐morning October quake—several times greater than the collapse of either tower—jolted millions of residents awake with both reminders of the tragedy and fear of yet another attack. 9‐1‐1 calls overwhelmed dispatchers and first responders with reports of shaking buildings and questions about safety in the city. For seismologists, though, that little quake was less about foreign threats to our soil and more about the possibility of larger tremors to come.
Remember: The Big Apple has experienced an M 5.0 quake about every hundred years. The last one was that 1884 event. And that, says Merguerian, means the city is overdue. Just how overdue?
“Gee whiz!” He laughs when I pose this question. “That’s the holy grail of seismicity, isn’t it?”
He says all we can do to answer that question is “take the pulse of what’s gone on in recorded history.” To really have an answer, we’d need to have about ten times as much data as we do today. But from what he’s seen, the faults below New York are very much alive.
“These guys are loaded,” he tells me.
He says he is also concerned about new studies of a previously unknown fault zone known as the Ramapo that runs not far from the city. Savage shares his concerns. They both think it’s capable of an M 6.0 quake or even higher—maybe even a 7.0. If and when, though, is really anybody’s guess.
“We literally have no idea what’s happening in our backyard,” says Savage.
What we do know is that these quakes have the potential to do more damage than similar ones out West, mostly because they are occurring on far harder rock capable of propagating waves much farther. And because these quakes occur in places with higher population densities, these eastern events can affect a lot more people. Take the 2011 Virginia quake: Although it was only a moderate one, more Americans felt it than any other one in our nation’s history.
That’s the thing about the East Coast: Its earthquake hazard may be lower than that of the West Coast, but the total effect of any given quake is much higher. Disaster specialists talk about this in terms of risk, and they make sense of it with an equation that multiplies the potential hazard of an event by the cost of damage and the number of people harmed. When you take all of those factors into account, the earthquake risk in New York is much greater than, say, that in Alaska or Hawaii or even a lot of the area around the San Andreas Fault.
Merguerian has been sounding the alarm about earthquake risk in the city since the ’90s. He admits he hasn’t gotten much of a response. He says that when he first proposed the idea of seismic risk in New York City, his fellow scientists “booed and threw vegetables” at him. He volunteered his services to the city’s Office of Emergency Management but says his original offer also fell on deaf ears.
“So I backed away gently and went back to academia.”
Today, he says, the city isn’t much more responsive, but he’s getting a much better response from his peers.
He’s glad for that, he says, but it’s not enough. If anything, the events of 9/11, along with the devastation caused in 2012 by Superstorm Sandy, should tell us just how bad it could be there.
He and Savage agree that what makes the risk most troubling is just how little we know about it. When it comes right down to it, intraplate faults are the least understood. Some scientists think they might be caused by mantle flow deep below the earth’s crust. Others think they might be related to gravitational energy. Still others think quakes occurring there might be caused by the force of the Atlantic ridge as it pushes outward. Then again, it could be because the land is springing back after being compressed thousands of years ago by glaciers (a phenomenon geologists refer to as seismic rebound).
“We just have no consciousness towards earthquakes in the eastern United States,” says Merguerian. “And that’s a big mistake.”
Adapted from Quakeland: On the Road to America’s Next Devastating Earthquake by Kathryn Miles, published by Dutton, an imprint of Penguin Publishing Group, a division of Penguin Random House, LLC. Copyright © 2017 by Kathryn Miles.

Before The BIG Leak At The Sixth Seal (Rev 6:12)


Highly radioactive leak found at N.Y. nuclear plant
CBS/AP
Feb 7, 2016 7:25 AM EST
BUCHANAN, N.Y. — Gov. Andrew Cuomo is calling for an investigation after an apparent overflow at the Indian Point nuclear power plant spilled highly radioactive water into an underground monitoring well, but nuclear regulators said the public isn’t at risk.
Officials at Indian Point in Buchanan reported on Friday that water contaminated by tritium leaked into the groundwater under the facility.
The contamination has remained contained to the site, said Cuomo, who ordered the state’s environmental conservation and health departments to investigate.
“Our first concern is for the health and safety of the residents close to the facility and ensuring the groundwater leak does not pose a threat,” Cuomo said Saturday in a statement, according to CBS New York. “This latest failure at Indian Point is unacceptable and I have directed Department of Environmental Conservation Acting Commissioner Basil Seggos and Department of Health Commissioner Howard Zucker to fully investigate this incident and employ all available measures, including working with Nuclear Regulatory Commission, to determine the extent of the release, its likely duration, cause and potential impacts to the environment and public health.”
The leak occurred after a drain overflowed during a maintenance exercise while workers were transferring water, which has high levels of radioactive contamination, said Neil Sheehan, a spokesman for the Nuclear Regulatory Commission.
Normally, a sump pump would take the water and filter it into another treatment system, but the pump apparently was out of service, Sheehan said. After the drain overflowed, the water seeped out of the building into the groundwater.
It was unclear how much water spilled, but samples showed the water had a radioactivity level of more than 8 million picocuries per liter, a 65,000 percent increase from the average at the plant, Cuomo said. The levels are the highest regulators have seen at Indian Point, and the normal number is about 12,300 picocuries per liter, Cuomo said.
Contaminated groundwater would likely slowly make its way to the Hudson River, Sheehan said, but research has shown that water usually ends up in the middle of the river and is so diluted that the levels of radioactivity are nearly undetectable.
“We don’t believe there’s any concern for members of the public,” Sheehan said. “First of all, this water’s not going anywhere immediately — and, again, because of the dilution factor, you wouldn’t even be able to detect it were you to take a direct sample.”
A spokesman for Entergy Corp., the New Orleans-based company that operates Indian Point, said the overflow was “likely the cause of the elevated tritium levels.”
“While this instance of tritium in the ground is really not in accordance with our standards, there really is no health or public safety consequence,” spokesman Jerry Nappi said.
In a statement, Entergy also said, “While the effect of these elevated values is less than one-tenth of one percent of federal reporting guidelines, Entergy made voluntary notification to the NRC, state agencies and key stakeholders.”
There has been a history of groundwater contamination at Indian Point. A federal oversight agency issued a report after about 100,000 gallons of tritium-tainted water entered the groundwater supply in 2009, and elevated levels of tritium also were found in two monitoring wells at the plant in 2014. Officials said then the contamination likely stemmed from an earlier maintenance shutdown.

America Overdue For The Sixth Seal (Revelation 6:12)

New Study: America Overdue For Major Earthquake … In States You Didn’t Suspect

New York Destroyed
Written by: Daniel Jennings Current Events
Most Americans have a reasonable chance of experiencing a destructive earthquake within the next 50 years, the US Geological Survey (USGS) has concluded.

The survey’s new National Seismic Hazard Map show that the risk of earthquakes in parts of the country — such as the Midwest, Oregon and the Rocky Mountains — is far higher than previously thought. All total, Americans in one-third of the country saw their risk for an earthquake increase.
“I worry that we will wake up one morning and see earthquake damage in our country that is as bad as that has occurred in some developing nations that have experienced large earthquakes,” Carl Hedde, a risk management expert at insurer Munich Reinsurance America, said of the map in The Wall Street Journal. “Beyond building collapse, a large amount of our infrastructure could be immediately damaged. Our roads, bridges and energy transmission systems can be severely impacted.”
Among the findings:

  • The earthquake danger in parts of Missouri, Arkansas, Tennessee, Illinois and South Carolina is as high as that in Los Angeles.
  • 42 of the 50 states have a reasonable chance of experiencing a damaging earthquake in the next 50 years.
  • Parts of 16 states have the highest risk of a quake: Alaska, Hawaii, California, Oregon, Washington, Nevada, Utah, Idaho, Montana, Wyoming, Missouri, Arkansas, Tennessee, Illinois, Kentucky and South Carolina

“We know the hazard has increased for small and moderate size earthquakes,” USGS scientist William Ellsworth told The Journal. “We don’t know as well how much the hazard has increased for large earthquakes. Our suspicion is it has but we are working on understanding this.”
Frightening Results From New Study
The USGS used new computer modeling technology and data collected from recent quakes such as the one that struck Washington, D.C. in 2011 to produce the new maps. The maps show that many Americans who thought they were safe from earthquakes are not.
New Relocation Manual Helps Average Americans Get Out Of Harms Way Before The Coming Crisis
Some of the survey’s other disturbing findings include:

    • The earthquake danger in Oklahoma, Alabama, Colorado, Georgia, Indiana, Michigan, Virginia, New York and parts of New England is higher than previously thought.
    • Some major metropolitan areas, including Memphis, Salt Lake City, Seattle, St. Louis and Charleston, have a higher risk of earthquakes than previously thought. One of the nation’s most dangerous faults, the New Madrid fault, runs right through St. Louis and Missouri. It is the nation’s second most active fault. On Dec. 16, 1811, the New Madrid Fault was the site of the most powerful series of earthquakes in American history.
Geological Tectonic Survey

Geological Tectonic Survey

“Obviously the building codes throughout the central U.S. do not generally take earthquake risk or the risk of a large earthquake into account,” USGS Seismologist Elizabeth Cochran told The Journal. Her take: Earthquake damage in the central US could be far greater than in places like California, because structures in some locations are not built to withstand quakes.
Others agree.
“Earthquakes are quite rare in many places but when they happen they cause very intense damage because people have not prepared,” Mark Petersen, the project chief for the USGS’s National Seismic Hazard Map, told The Journal.
This new map should be a wakeup call for Americans.

A Closer Look At The Sixth Seal (Rev 6:12)

A Look at the Tri-State’s Active Fault Line

Ramapo
Monday, March 14, 2011

The Ramapo Fault is the longest fault in the Northeast that occasionally makes local headlines when minor tremors cause rock the Tri-State region. It begins in Pennsylvania, crosses the Delaware River and continues through Hunterdon, Somerset, Morris, Passaic and Bergen counties before crossing the Hudson River near Indian Point nuclear facility.
In the past, it has generated occasional activity that generated a 2.6 magnitude quake in New Jersey’s Peakpack/Gladstone area and 3.0 magnitude quake in Mendham.
But the New Jersey-New York region is relatively seismically stable according to Dr. Dave Robinson, Professor of Geography at Rutgers. Although it does have activity.
“There is occasional seismic activity in New Jersey,” said Robinson. “There have been a few quakes locally that have been felt and done a little bit of damage over the time since colonial settlement — some chimneys knocked down in Manhattan with a quake back in the 18th century, but nothing of a significant magnitude.”
Robinson said the Ramapo has on occasion registered a measurable quake but has not caused damage: “The Ramapo fault is associated with geological activities back 200 million years ago, but it’s still a little creaky now and again,” he said.
“More recently, in the 1970s and early 1980s, earthquake risk along the Ramapo Fault received attention because of its proximity to Indian Point,” according to the New Jersey Geological Survey website.
Historically, critics of the Indian Point Nuclear facility in Westchester County, New York, did cite its proximity to the Ramapo fault line as a significant risk.
In 1884, according to the New Jersey Geological Survey website, the  Rampao Fault was blamed for a 5.5 quake that toppled chimneys in New York City and New Jersey that was felt from Maine to Virginia.
“Subsequent investigations have shown the 1884 Earthquake epicenter was actually located in Brooklyn, New York, at least 25 miles from the Ramapo Fault,” according to the New Jersey Geological Survey website.

THE SIXTH SEAL: NEW YORK CITY (REV 6:12)

Earthquake activity in the New York City area

300px-RamapoFaultSystem
Wikipedia
Although the eastern United States is not as seismically active as regions near plate boundaries, large and damaging earthquakes do occur there. Furthermore, when these rare eastern U.S. earthquakes occur, the areas affected by them are much larger than for western U.S. earthquakes of the same magnitude. Thus, earthquakes represent at least a moderate hazard to East Coast cities, including New York City and adjacent areas of very high population density.
220px-NYC_Seis

Seismicity in the vicinity of New York City. Data are from the U.S. Geological Survey (Top, USGS) and the National Earthquake Information Center (Bottom, NEIC). In the top figure, closed red circles indicate 1924-2006 epicenters and open black circles indicate locations of the larger earthquakes that occurred in 1737, 1783 and 1884. Green lines indicate the trace of the Ramapo fault.

As can be seen in the maps of earthquake activity in this region(shown in the figure), seismicity is scattered throughout most of the New York City area, with some hint of a concentration of earthquakes in the area surrounding Manhattan Island. The largest known earthquake in this region occurred in 1884 and had a magnitude of approximately 5. For this earthquake, observations of fallen bricks and cracked plaster were reported from eastern Pennsylvania to central Connecticut, and the maximum intensity reported was at two sites in western Long Island (Jamaica, New York and Amityville, New York). Two other earthquakes of approximately magnitude 5 occurred in this region in 1737 and 1783. The figure on the right shows maps of the distribution of earthquakes of magnitude 3 and greater that occurred in this region from 1924 to 2010, along with locations of the larger earthquakes that occurred in 1737, 1783 and 1884.

Background

The NYC area is part of the geologically complex structure of the Northern Appalachian Mountains. This complex structure was formed during the past half billion years when the Earth’s crust underlying the Northern Appalachians was the site of two major geological episodes, each of which has left its imprint on the NYC area bedrock. Between about 450 million years ago and about 250 million years ago, the Northern Appalachian region was affected by a continental collision, in which the ancient African continent collided with the ancient North American continent to form the supercontinent Pangaea. Beginning about 200 million years ago, the present-day Atlantic ocean began to form as plate tectonic forces began to rift apart the continent of Pangaea. The last major episode of geological activity to affect the bedrock in the New York area occurred about 100 million years ago, during the Mesozoic era, when continental rifting that led to the opening of the present-day Atlantic ocean formed the Hartford and Newark Mesozoic rift basins.
Earthquake rates in the northeastern United States are about 50 to 200 times lower than in California, but the earthquakes that do occur in the northeastern U.S. are typically felt over a much broader region than earthquakes of the same magnitude in the western U.S.This means the area of damage from an earthquake in the northeastern U.S. could be larger than the area of damage caused by an earthquake of the same magnitude in the western U.S. The cooler rocks in the northeastern U.S. contribute to the seismic energy propagating as much as ten times further than in the warmer rocks of California. A magnitude 4.0 eastern U.S. earthquake typically can be felt as far as 100 km (60 mi) from its epicenter, but it infrequently causes damage near its source. A magnitude 5.5 eastern U.S. earthquake, although uncommon, can be felt as far as 500 km (300 mi) from its epicenter, and can cause damage as far away as 40 km (25 mi) from its epicenter. Earthquakes stronger than about magnitude 5.0 generate ground motions that are strong enough to be damaging in the epicentral area.
At well-studied plate boundaries like the San Andreas fault system in California, scientists can often make observations that allow them to identify the specific fault on which an earthquake took place. In contrast, east of the Rocky Mountains this is rarely the case.  The NYC area is far from the boundaries of the North American plate, which are in the center of the Atlantic Ocean, in the Caribbean Sea, and along the west coast of North America. The seismicity of the northeastern U.S. is generally considered to be due to ancient zones of weakness that are being reactivated in the present-day stress field. In this model, pre-existing faults that were formed during ancient geological episodes persist in the intraplate crust, and the earthquakes occur when the present-day stress is released along these zones of weakness. The stress that causes the earthquakes is generally considered to be derived from present-day rifting at the Mid-Atlantic ridge.

Earthquakes and geologically mapped faults in the Northeastern U.S.

The northeastern U.S. has many known faults, but virtually all of the known faults have not been active for perhaps 90 million years or more. Also, the locations of the known faults are not well determined at earthquake depths. Accordingly, few (if any) earthquakes in the region can be unambiguously linked to known faults. Given the current geological and seismological data, it is difficult to determine if a known fault in this region is still active today and could produce a modern earthquake. As in most other areas east of the Rocky Mountains, the best guide to earthquake hazard in the northeastern U.S. is probably the locations of the past earthquakes themselves.

The Ramapo fault and other New York City area faults

The Ramapo Fault, which marks the western boundary of the Newark rift basin, has been argued to be a major seismically active feature of this region,but it is difficult to discern the extent to which the Ramapo fault (or any other specific mapped fault in the area) might be any more of a source of future earthquakes than any other parts of the region. The Ramapo Fault zone spans more than 185 miles (300 kilometers) in New York, New Jersey, and Pennsylvania. It is a system of faults between the northern Appalachian Mountains and Piedmont areas to the east. This fault is perhaps the best known fault zone in the Mid-Atlantic region, and some small earthquakes have been known to occur in its vicinity. Recently, public knowledge about the fault has increased – especially after the 1970s, when the fault’s proximity to the Indian Point nuclear plant in New York was noticed.
There is insufficient evidence to unequivocally demonstrate any strong correlation of earthquakes in the New York City area with specific faults or other geologic structures in this region. The damaging earthquake affecting New York City in 1884 was probably not associated with the Ramapo fault because the strongest shaking from that earthquake occurred on Long Island (quite far from the trace of the Ramapo fault). The relationship between faults and earthquakes in the New York City area is currently understood to be more complex than any simple association of a specific earthquake with a specific mapped fault.
A 2008 study argued that a magnitude 6 or 7 earthquake might originate from the Ramapo fault zone, which would almost definitely spawn hundreds or even thousands of fatalities and billions of dollars in damage. Studying around 400 earthquakes over the past 300 years, the study also argued that there was an additional fault zone extending from the Ramapo Fault zone into southwestern Connecticut. As can be seen in the above figure of seismicity, earthquakes are scattered throughout this region, with no particular concentration of activity along the Ramapo fault, or along the hypothesized fault zone extending into southwestern Connecticut.
Just off the northern terminus of the Ramapo fault is the Indian Point Nuclear Power Plant, built between 1956 and 1960 by Consolidated Edison Company. The plant began operating in 1963, and it has been the subject of a controversy over concerns that an earthquake from the Ramapo fault will affect the power plant. Whether or not the Ramapo fault actually does pose a threat to this nuclear power plant remains an open question.

The Sixth Seal Will be in New York (Rev 6:12)


Earthquakes Can Happen in More Places Than You Think
By Simon Worrall
PUBLISHED AUGUST 26, 2017
Half a million earthquakes occur worldwide each year, according to an estimate by the U.S. Geological Survey (USGS). Most are too small to rattle your teacup. But some, like the 2011 quake off the coast of Japan or last year’s disaster in Italy, can level high-rise buildings, knock out power, water and communications, and leave a lifelong legacy of trauma for those unlucky enough to be caught in them.
In the U.S., the focus is on California’s San Andreas fault, which geologists suggest has a nearly one-in-five chance of causing a major earthquake in the next three decades. But it’s not just the faults we know about that should concern us, says Kathryn Miles, author of Quakeland: On the Road to America’s Next Devastating Earthquake. As she explained when National Geographic caught up with her at her home in Portland, Maine, there’s a much larger number of faults we don’t know about—and fracking is only adding to the risks.
When it comes to earthquakes, there is really only one question everyone wants to know: When will the big one hit California?
That’s the question seismologists wish they could answer, too! One of the most shocking and surprising things for me is just how little is actually known about this natural phenomenon. The geophysicists, seismologists, and emergency managers that I spoke with are the first to say, “We just don’t know!”
What we can say is that it is relatively certain that a major earthquake will happen in California in our lifetime. We don’t know where or when. An earthquake happening east of San Diego out in the desert is going to have hugely different effects than that same earthquake happening in, say, Los Angeles. They’re both possible, both likely, but we just don’t know.
One of the things that’s important to understand about San Andreas is that it’s a fault zone. As laypeople we tend to think about it as this single crack that runs through California and if it cracks enough it’s going to dump the state into the ocean. But that’s not what’s happening here. San Andreas is a huge fault zone, which goes through very different types of geological features. As a result, very different types of earthquakes can happen in different places.
There are other places around the country that are also well overdue for an earthquake. New York City has historically had a moderate earthquake approximately every 100 years. If that is to be trusted, any moment now there will be another one, which will be devastating for that city.
As Charles Richter, inventor of the Richter Scale, famously said, “Only fools, liars and charlatans predict earthquakes.” Why are earthquakes so hard to predict? After all, we have sent rockets into space and plumbed the depths of the ocean.
You’re right: We know far more about distant galaxies than we do about the inner workings of our planet. The problem is that seismologists can’t study an earthquake because they don’t know when or where it’s going to happen. It could happen six miles underground or six miles under the ocean, in which case they can’t even witness it. They can go back and do forensic, post-mortem work. But we still don’t know where most faults lie. We only know where a fault is after an earthquake has occurred. If you look at the last 100 years of major earthquakes in the U.S., they’ve all happened on faults we didn’t even know existed.
Earthquakes 101
Earthquakes are unpredictable and can strike with enough force to bring buildings down. Find out what causes earthquakes, why they’re so deadly, and what’s being done to help buildings sustain their hits.
Fracking is a relatively new industry. Many people believe that it can cause what are known as induced earthquakes. What’s the scientific consensus?
The scientific consensus is that a practice known as wastewater injection undeniably causes earthquakes when the geological features are conducive. In the fracking process, water and lubricants are injected into the earth to split open the rock, so oil and natural gas can be retrieved. As this happens, wastewater is also retrieved and brought back to the surface.
You Might Also Like
Different states deal with this in different ways. Some states, like Pennsylvania, favor letting the wastewater settle in aboveground pools, which can cause run-off contamination of drinking supplies. Other states, like Oklahoma, have chosen to re-inject the water into the ground. And what we’re seeing in Oklahoma is that this injection is enough to shift the pressure inside the earth’s core, so that daily earthquakes are happening in communities like Stillwater. As our technology improves, and both our ability and need to extract more resources from the earth increases, our risk of causing earthquakes will also rise exponentially.
After Fukushima, the idea of storing nuclear waste underground cannot be guaranteed to be safe. Yet President Trump has recently green-lighted new funds for the Yucca Mountain site in Nevada. Is that wise?
The issue with Fukushima was not about underground nuclear storage but it is relevant. The Tohoku earthquake, off the coast of Japan, was a massive, 9.0 earthquake—so big that it shifted the axis of the earth and moved the entire island of Japan some eight centimeters! It also created a series of tsunamis, which swamped the Fukushima nuclear power plant to a degree the designers did not believe was possible.
Here in the U.S., we have nuclear plants that are also potentially vulnerable to earthquakes and tsunamis, above all on the East Coast, like Pilgrim Nuclear, south of Boston, or Indian Point, north of New York City. Both of these have been deemed by the USGS to have an unacceptable level of seismic risk. [Both are scheduled to close in the next few years.]
Yucca Mountain is meant to address our need to store the huge amounts of nuclear waste that have been accumulating for more than 40 years. Problem number one is getting it out of these plants. We are going to have to somehow truck or train these spent fuel rods from, say, Boston, to a place like Yucca Mountain, in Nevada. On the way it will have to go through multiple earthquake zones, including New Madrid, which is widely considered to be one of the country’s most dangerous earthquake zones.
Yucca Mountain itself has had seismic activity. Ultimately, there’s no great place to put nuclear waste—and there’s no guarantee that where we do put it is going to be safe.
The psychological and emotional effects of an earthquake are especially harrowing. Why is that?
This is a fascinating and newly emerging subfield within psychology, which looks at the effects of natural disasters on both our individual and collective psyches. Whenever you experience significant trauma, you’re going to see a huge increase in PTSD, anxiety, depression, suicide, and even violent behaviors.
What seems to make earthquakes particularly pernicious is the surprise factor. A tornado will usually give people a few minutes, if not longer, to prepare; same thing with hurricanes. But that doesn’t happen with an earthquake. There is nothing but profound surprise. And the idea that the bedrock we walk and sleep upon can somehow become liquid and mobile seems to be really difficult for us to get our heads around.
Psychologists think that there are two things happening. One is a PTSD-type loop where our brain replays the trauma again and again, manifesting itself in dreams or panic attacks during the day. But there also appears to be a physiological effect as well as a psychological one. If your readers have ever been at sea for some time and then get off the ship and try to walk on dry land, they know they will look like drunkards. [Laughs] The reason for this is that the inner ear has habituated itself to the motion of the ship. We think the inner ear does something similar in the case of earthquakes, in an attempt to make sense of this strange, jarring movement.
After the Abruzzo quake in Italy, seven seismologists were actually tried and sentenced to six years in jail for failing to predict the disaster. Wouldn’t a similar threat help improve the prediction skills of American seismologists?
[Laughs] The scientific community was uniform in denouncing that action by the Italian government because, right now, earthquakes are impossible to predict. But the question of culpability is an important one. To what degree do we want to hold anyone responsible? Do we want to hold the local meteorologist responsible if he gets the weather forecast wrong? [Laughs]
What scientists say—and I don’t think this is a dodge on their parts—is, “Predicting earthquakes is the Holy Grail; it’s not going to happen in our lifetime. It may never happen.” What we can do is work on early warning systems, where we can at least give people 30 or 90 seconds to make a few quick decisive moves that could well save your life. We have failed to do that. But Mexico has had one in place for years!
There is some evidence that animals can predict earthquakes. Is there any truth to these theories?
All we know right now is anecdotal information because this is so hard to test for. We don’t know where the next earthquake is going to be so we can’t necessarily set up cameras and observe the animals there. So we have to rely on these anecdotal reports, say, of reptiles coming out of the ground prior to a quake. The one thing that was recorded here in the U.S. recently was that in the seconds before an earthquake in Oklahoma huge flocks of birds took flight. Was that coincidence? Related? We can’t draw that correlation yet.
One of the fascinating new approaches to prediction is the MyQuake app. Tell us how it works—and why it could be an especially good solution for Third World countries.
The USGS desperately wants to have it funded. The reluctance appears to be from Congress. A consortium of universities, in conjunction with the USGS, has been working on some fascinating tools. One is a dense network of seismographs that feed into a mainframe computer, which can take all the information and within nanoseconds understand that an earthquake is starting.
MyQuake is an app where you can get up to date information on what’s happening around the world. What’s fascinating is that our phones can also serve as seismographs. The same technology that knows which way your phone is facing, and whether it should show us an image in portrait or landscape, registers other kinds of movement. Scientists at UC Berkeley are looking to see if they can crowd source that information so that in places where we don’t have a lot of seismographs or measuring instruments, like New York City or Chicago or developing countries like Nepal, we can use smart phones both to record quakes and to send out early warning notices to people.
You traveled all over the U.S. for your research. Did you return home feeling safer?
I do not feel safer in the sense that I had no idea just how much risk regions of this country face on a daily basis when it comes to seismic hazards. We tend to think of this as a West Coast problem but it’s not! It’s a New York, Memphis, Seattle, or Phoenix problem. Nearly every major urban center in this country is at risk of a measurable earthquake.
What I do feel safer about is knowing what I can do as an individual. I hope that is a major take-home message for people who read the book. There are so many things we should be doing as individuals, family members, or communities to minimize this risk: simple things from having a go-bag and an emergency plan amongst the family to larger things like building codes.
We know that a major earthquake is going to happen. It’s probably going to knock out our communications lines. Phones aren’t going to work, Wi-Fi is going to go down, first responders are not going to be able to get to people for quite some time. So it is beholden on all of us to make sure we can survive until help can get to us.
This interview was edited for length and clarity.

Quakes Leading Up To The Sixth Seal of NYC (Rev 6:12)

worlds-biggest-earthquakes

The world’s strongest earthquakes since 1900

Source: U.s. Geological Survey
A magnitude-7.8 earthquake shook Nepal’s capital and the densely populated Kathmandu Valley on Saturday, the worst quake in the Himalayan nation in over 80 years.
The world’s strongest earthquakes since 1900:
May 22, 1960: A magnitude-9.5 earthquake in southern Chile and ensuing tsunami kill at least 1,716 people.
March 28, 1964: A magnitude-9.2 quake in Prince William Sound, Alaska, kills 131 people, including 128 from a tsunami.
Dec. 26, 2004: A magnitude-9.1 quake in Indonesia triggers an Indian Ocean tsunami, killing 230,000 people in a dozen countries.
March 11, 2011: A magnitude-9.0 quake off the northeast coast of Japan triggers a tsunami, killing more than 18,000 people.
Nov. 4, 1952: A magnitude-9.0 quake in Kamchatka in Russia’s Far East causes damage but no reported deaths despite setting off 9.1-meter (30-foot) waves in Hawaii.
Feb. 27, 2010: A magnitude-8.8 quake shakes Chile, generating a tsunami and killing 524 people.
Jan. 31, 1906: A magnitude-8.8 quake off the coast of Ecuador generates a tsunami that kills at least 500 people.
Feb. 4, 1965: A magnitude-8.7 quake strikes Alaska’s Rat Islands, causing an 11-meter-high tsunami.
March 28, 2005: A magnitude-8.6 quake in northern Sumatra in Indonesia kills about 1,300 people.
Aug. 15, 1950: A magnitude-8.6 earthquake in Tibet kills at least 780 people.
April 11, 2012: A magnitude-8.6 quake off the west coast of northern Sumatra in Indonesia triggers tsunami warnings in more than two dozen nations.
March 9, 1957: A magnitude-8.6 quake strikes the Andreanof Islands in Alaska, triggering a 16-meter tsunami.
Sept. 12, 2007: A magnitude-8.5 quake near Sumatra in Indonesia kills at least 25 people.
Feb. 1, 1938: A magnitude-8.5 quake in the Banda Sea, Indonesia, generates a small tsunami.
Feb. 3, 1923: A magnitude-8.5 quake in Kamchatka in Russia’s Far East triggers a tsunami.
Nov. 11, 1922: A magnitude-8.5 quake along the Chile-Argentina border triggers a tsunami that causes damage along Chile’s coast.
Oct. 13, 1963: A magnitude-8.5 quake in the Kuril Islands triggers a tsunami.

The Ramapo Fault and the Sixth Seal (Revelation 6:12)

Ramapo Fault Line

Living on the Fault Line

Posted June 15, 2010 by Wayne J. Guglielmo

This chart shows the location of the Ramapo Fault System, the longest and one of the oldest systems of cracks in the earth’s crust in the Northeast. It also shows the location of all earthquakes of magnitude 2.5 or greater in New Jersey during the last 50 years. The circle in blue indicates the largest known Jersey quake.
The couple checked with Burns’s parents, who live in nearby Basking Ridge, and they, too, had heard and felt something, which they thought might have been an earthquake. A call by Burns some 20 minutes later to the Bernardsville Police Department—one of many curious and occasionally panicky inquiries that Sunday morning, according to the officer in charge, Sergeant John Remian—confirmed their suspicion: A magnitude 2.6 earthquake, its epicenter in Peapack/Gladstone, about seven miles from Bernardsville, had hit the area. A smaller aftershock followed about two and a half hours later.
After this year’s epic earthquakes in Haiti, Chile, Mexico, Indonesia, and China, the 2.6 quake and aftershock that shook parts of New Jersey in February may seem minor league, even to the Somerset County residents who experienced them. On the exponential Richter Scale, a magnitude 7.0 quake like the one that hit Haiti in January is almost 4 million times stronger than a quake of 2.6 magnitude. But comparisons of magnitude don’t tell the whole story.
Northern New Jersey straddles the Ramapo Fault, a significant ancient crack in the earth’s crust. The longest fault in the Northeast, it begins in Pennsylvania and moves into New Jersey, trending northeast through Hunterdon, Somerset, Morris, Passaic, and Bergen counties before terminating in New York’s Westchester County, not far from the Indian Point Energy Center, a nuclear power plant. And though scientists dispute how active this roughly 200 million-year-old fault really is, many earthquakes in the state’s surprisingly varied seismic history are believed to have occurred on or near it. The fault line is visible at ground level and likely extends as deep as nine miles below the surface.
During the past 230 years or so, New Jersey has been at the epicenter of nearly 170 earthquakes, according to data compiled by the New Jersey Geological Survey, part of the United States Department of Environmental Protection. The largest known quake struck in 1783, somewhere west of New York City, perhaps in Sussex County. It’s typically listed as 5.3 in magnitude, though that’s an estimate by seismologists who are quick to point out that the concept of magnitude—measuring the relative size of an earthquake—was not introduced until 1935 by Charles Richter and Beno Gutenberg. Still, for quakes prior to that, scientists are not just guessing.
“We can figure out the damage at the time by going back to old records and newspaper accounts,” says Won-Young Kim, a senior research scientist at Columbia University’s Lamont-Doherty Earth Observatory in Palisades, New York, directly across the New Jersey border. “Once the amount and extent of contemporary damage has been established,” Kim says, “we’re then able to gauge the pattern of ground shaking or intensity of the event—and from there extrapolate its probable magnitude.”
Other earthquakes of magnitude 5 or higher have been felt in New Jersey, although their epicenters laying near New York City. One—which took place in 1737 and was said to have been felt as far north as Boston and as far south as northern Delaware—was probably in the 5 to 5.5 range. In 1884, an earthquake of similar magnitude occurred off New York’s Rockaway Beach. This well-documented event pulled houses off their foundations and caused steeples to topple as far west as Rahway. The shock wave, scientists believe, was felt over 70,000 square miles, from Vermont to Maryland.
Among the largest sub-5 magnitude earthquakes with epicenters in New Jersey, two (a 3.8 and a 4.0) took place on the same day in 1938 in the Lakehurst area in Ocean County. On August 26, 2003, a 3.5 magnitude quake shook the Frenchtown/Milford area in Hunterdon County. On February 3 of last year, a 3.0 magnitude quake occurred in the Morris County town of Mendham. “A lot of people felt this one because of the intense shaking, although the area of intensity wasn’t very wide,” says Lamont-Doherty’s Kim, who visited the site after the event.
After examining the known historical and geological record, Kim and other seismologists have found no clear evidence that an earthquake of greater than 5.3 to 5.5 magnitude has taken place in this area going back to 1737. This doesn’t mean, of course, that one did not take place in the more remote past or that one will not occur in the future; it simply means that a very large quake is less likely to occur here than in other places in the east where the seismic hazard is greater, including areas in South Carolina and northeastern New York State.
But no area on the East Coast is as densely populated or as heavily built-up as parts of New Jersey and its neighbors. For this reason, scientists refer to the Greater New York City-Philadelphia area, which includes New Jersey’s biggest cities, as one of “low earthquake hazard but high vulnerability.” Put simply, the Big One isn’t likely here—but if it comes, especially in certain locations, watch out.
Given this low-hazard, high-vulnerability scenario, how far along are scientists in their efforts to predict larger magnitude earthquakes in the New Jersey area? The answer is complex, complicated by the state’s geographical position, its unique geological history, the state of seismology itself, and the continuing debate over the exact nature and activity of the Ramapo Fault.
Over millions of years, New Jersey developed four distinct physiographic provinces or regions, which divide the state into a series of diagonal slices, each with its own terrain, rock type, and geological landforms.
The northernmost slice is the Valley and Ridge, comprising major portions of Sussex and Warren counties. The southernmost slice is the Coastal Plain, a huge expanse that covers some three-fifths of the state, including all of the Shore counties. Dividing the rest of the state are the Highlands, an area for the most part of solid but brittle rock right below the Valley and Ridge, and the lower lands of the Piedmont, which occupy all of Essex, Hudson, and Union counties, most of Bergen, Hunterdon, and Somerset, and parts of Middlesex, Morris, and Passaic.
For earthquake monitors and scientists, the formation of these last two provinces—the Highlands and the Piedmont—are of special interest. To understand why, consider that prior to the appearance of the Atlantic Ocean, today’s Africa was snuggled cozily up against North America and surrounded by a single enormous ocean. “At that point, you could have had exits off the New Jersey Turnpike for Morocco,” says Alexander Gates, professor of geology and chair of the department of Earth and Environmental Sciences at Rutgers-Newark.
Under the pressure of circulating material within the Earth’s super-hot middle layer, or mantle, what was once a single continent—one that is thought to have included today’s other continents as well—began to stretch and eventually break, producing numerous cracks or faults and ultimately separating to form what became the Atlantic Ocean. In our area, the longest and most active of these many cracks was the Ramapo Fault, which, through a process known as normal faulting, caused one side of the earth’s crust to slip lower—the Piedmont—relative to the other side—the Highlands. “All this occurred about 225 million years ago,” says Gates. “Back then, you were talking about thousands of feet between the Highlands and the Piedmont and a very active Ramapo Fault.”
The Earth’s crust, which is 20 to 25 miles thick, is not a single, solid shell, but is broken into seven vast tectonic plates, which drift atop the soft, underlying mantle. Although the northeast-trending Ramapo Fault neatly divides two of New Jersey’s four physiographic provinces, it does not form a so-called plate boundary, as does California’s infamous San Andreas Fault. As many Californians know all too well, this giant fault forms the boundary between two plates—to the west, the Pacific Plate, and to the east, the North American Plate; these rub up against each other, producing huge stresses and a regularly repeating pattern of larger earthquakes.
The Ramapo Fault sits on the North American Plate, which extends past the East Coast to the middle of the Atlantic, where it meets the Mid-Atlantic Ridge, an underwater mountain range in constant flux. The consequences of this intraplate setting are huge: First, as Gates points out, “The predictability of bigger earthquakes on…[such] settings is exceedingly poor, because they don’t occur very often.” Second, the intraplate setting makes it more difficult to link our earthquakes to a major cause or fault, as monitors in California can often do.
This second bit of uncertainty is especially troubling for some people, including some in the media who want a neat story. To get around it, they ignore the differences between plate settings and link all of New Jersey’s earthquakes, either directly or implicitly, to the Ramapo Fault. In effect, such people want the Ramapo Fault “to look like the San Andreas Fault,” says Gates. “They want to be able to point to one big fault that’s causing all of our earthquakes.”
Gates does not think that’s the case, and he has been working with colleagues for a number of years to prove it. “What we have found is that there are smaller faults that generally cut from east to west across the northeast-trending Ramapo Fault,” he explains. “These much smaller faults are all over the place, and they’re actually the ones that are the active faults in the area.”
But what mechanisms are responsible for the formation of these apparently active auxiliary faults? One such mechanism, say scientists, is the westward pressure the Atlantic Ocean exerts on the North American Plate, which for the most part resists any movement. “I think we are in an equilibrium state most of the time,” says Lamont-Doherty’s Kim.
Still, that continuous pressure on the plate we sit on causes stress, and when that stress builds up sufficiently, the earth’s crust has a tendency to break around any weak zones. In our area, the major weak zone is the Ramapo Fault—“an ancient zone of weakness,” as Kim calls it. That zone of weakness exacerbates the formation of auxiliary faults, and thereby the series of minor earthquakes the state has experienced over the years.
All this presupposes, of course, that any intraplate stress in this area will continue to be released gradually, in a series of relatively minor earthquakes or releases of energy. But what if that were not the case? What if the stress continued to build up, and the release of large amounts of energy came all at once? In crude terms, that’s part of the story behind the giant earthquakes that rocked what is now New Madrid, Missouri, between 1811 and 1812. Although estimates of their magnitude have been revised downward in recent years to less than magnitude 8, these earthquakes are generally regarded as among the largest intraplate events to have occurred in the continental United States.
For a number of reasons—including the relatively low odds that the kind of stored energy that unleashed the New Madrid events could ever build up here—earthquakes of plus-6 magnitude are probably not in our future. Still, says Kim, even a magnitude 6 earthquake in certain areas of the state could do considerable damage, especially if its intensity or ground shaking was of sufficient strength. In a state as geologically diverse and densely populated as New Jersey, this is a crucial wild card.
Part of the job of the experts at the New Jersey Geological Survey is to assess the seismic hazards in different parts of the state. To do this, they use a computer-simulation model developed under the direction of the Federal Emergency Management Agency, known as HAZUS, for Hazards US. To assess the amount of ground shaking likely to occur in a given county during events ranging in magnitude from 5 to 7 on the Richter Scale, NJGS scientists enter three features of a county’s surface geology into their computer model. Two of these features relate to the tendency of soil in a given area to lose strength, liquefy, or slide downhill when shaken. The third and most crucial feature has to do with the depth and density of the soil itself and the type of bedrock lying below it; this is a key component in determining a region’s susceptibility to ground shaking and, therefore, in estimating the amount of building and structural damage that’s likely to occur in that region. Estimates for the various counties—nine to date have been studied—are sent to the New Jersey Office of Emergency Management, which provided partial funding for the project.
To appreciate why this element of ground geology is so crucial to earthquake modelers, consider the following: An earthquake’s intensity—which is measured on something called the Modified Mercalli Scale—is related to a number of factors. The amount of energy released or the magnitude of an event is clearly a big factor. But two earthquakes of the same magnitude can have very different levels of intensity; in fact, it’s quite possible for a lower magnitude event to generate more ground shaking than a higher magnitude one.
In addition to magnitude, other factors that affect intensity are the distance of the observer or structure from the epicenter, where intensity is the greatest; the depth beneath the surface of the initial rupture, with shallower ruptures producing more ground shaking than deeper ones; and, most significantly, the ground geology or material that the shock wave generated by the earthquake must pass through.
As a rule, softer materials like sand and gravel shake much more intensely than harder materials, because the softer materials are comparatively inefficient energy conductors, so whatever energy is released by the quake tends to be trapped, dispersing much more slowly. (Think of a bowl of Jell-O on a table that’s shaking.)
In contrast, harder materials, like the solid rock found widely in the Highlands, are brittle and break under pressure, but conduct energy well, so that even big shock waves disperse much more rapidly through them, thereby weakening the amount of ground shaking. “If you’ve read any stories about the 1906 earthquake in San Francisco, you know the most intense damage was in those flat, low areas by the Bay, where the soil is soft, and not in the hilly, rocky areas above,” says Karl Muessig, state geologist and NJGS head.
The map that accompanies the online version of the NJGS’s Earthquake Loss Estimation Study divides the state’s surface geology into five seismic soil classes, ranging from Class A, or hard rock, to Class E, or soft soil (state.nj.us/dep/njgs/enviroed/hazus.htm).
Although the weakest soils are scattered throughout the state, including the Highlands, which besides harder rock also contains areas of glacial lakes, clays, and wetlands, they are most evident in the Piedmont and the Coastal Plain. “The largest expanses of them are in coastal areas where you have salt marshes or large glacial lakes, as in parts of the Passaic River basin,” says Scott Stanford, a research scientist with NJGS and lead author of the estimate. Some of the very weakest soils, Stanford adds, are in areas of filled marshland, including places along the Hudson waterfront, around Newark Bay and the Meadowlands, and along the Arthur Kill.
Faults in these areas—and in the coastal plain generally—are far below the ground, perhaps several hundred to a thousand feet down, making identification difficult. “There are numerous faults upon which you might get earthquake movement that we can’t see, because they’re covered by younger sediments,” Stanford says.
This combination of hidden faults and weak soils worries scientists, who are all too aware that parts of the coastal plain and Piedmont are among the most densely populated and developed areas in the state. (The HAZUS computer model also has a “built environment” component, which summarizes, among other things, types of buildings in a given area.) For this reason, such areas would be in the most jeopardy in the event of a large earthquake.
“Any vulnerable structure on these weak soils would have a higher failure hazard,” Stanford says. And the scary truth is that many structures in New Jersey’s largest cities, not to mention New York City, would be vulnerable, since they’re older and built before anyone gave much thought to earthquake-related engineering and construction codes.
For example, in the study’s loss estimate for Essex County, which includes Newark, the state’s largest city, a magnitude 6 event would result in damage to 81,600 buildings, including almost 10,000 extensively or completely; 36,000 people either displaced from their homes or forced to seek short-term shelter; almost $9 million in economic losses from property damage and business interruption; and close to 3,300 injuries and 50 fatalities. (The New York City Area Consortium for Earthquake Loss Mitigation has conducted a similar assessment for New York City, at nycem.org.)
All of this suggests the central irony of New Jersey geology: The upland areas that are most prone to earthquakes—the counties in or around the Ramapo Fault, which has spawned a network of splays, or auxiliary faults—are much less densely populated and sit, for the most part, on good bedrock. These areas are not invulnerable, certainly, but, by almost all measures, they would not sustain very severe damage, even in the event of a higher magnitude earthquake. The same can’t be said for other parts of the state, where the earthquake hazard is lower but the vulnerability far greater. Here, the best we can do is to prepare—both in terms of better building codes and a constantly improving emergency response.
Meanwhile, scientists like Rutgers’s Gates struggle to understand the Earth’s quirky seismic timetable: “The big thing with earthquakes is that you can commonly predict where they are going to occur,” Gates says. “When they’re going to come, well, we’re nowhere near being able to figure that out.”
***********************
Planning for the Big One
For the men and women of the state police who manage and support the New Jersey Office of Emergency Management (OEM), the response to some events, like hurricanes, can be marshalled in advance. But an earthquake is what responders call a no-notice event.
In New Jersey, even minor earthquakes—like the one that shook parts of Somerset County in February—attract the notice of local, county, and OEM officials, who continuously monitor events around the state from their Regional Operations and Intelligence Center (The ROIC) in West Trenton, a multimillion dollar command-and-control facility that has been built to withstand 125 mph winds and a 5.5 magnitude earthquake. In the event of a very large earthquake, during which local and county resources are apt to become quickly overwhelmed, command and control authority would almost instantly pass to West Trenton.
Here, officials from the state police, representatives of a galaxy of other state agencies, and a variety of communications and other experts would assemble in the cavernous and ultra-high tech Emergency Operations Center to oversee the state’s response. “A high-level earthquake would definitely cause the governor to declare a state of emergency,” says OEM public information officer Nicholas J. Morici. “And once that takes place, our emergency operations plan would be put in motion.”
Emergency officials have modeled that plan—one that can be adapted to any no-notice event, including a terrorist attack—on response methodologies developed by the Federal Emergency Management Agency (FEMA), part of the U.S. Department of Homeland Security. At its core is a series of seventeen emergency support functions, ranging from transportation to firefighting, debris removal, search and rescue, public health, and medical services. A high-magnitude event would likely activate all of these functions, says Morici, along with the human and physical resources needed to carry them out—cranes and heavy trucks for debris removal, fire trucks and teams for firefighting, doctors and EMTs for medical services, buses and personnel carriers for transportation, and so on.
This is where an expert like Tom Rafferty comes in. Rafferty is a Geographic Information Systems Specialist attached to the OEM. His job during an emergency is to keep track electronically of which resources are where in the state, so they can be deployed quickly to where they are needed. “We have a massive database called the Resource Directory Database in which we have geolocated municipal, county, and state assets to a very detailed map of New Jersey,” Rafferty says. “That way, if there is an emergency like an earthquake going on in one area, the emergency managers can quickly say to me, for instance, ‘We have major debris and damage on this spot of the map. Show us the location of the nearest heavy hauler. Show us the next closest location,’ and so on.”
A very large quake, Rafferty says, “could overwhelm resources that we have as a state.” In that event, OEM has the authority to reach out to FEMA for additional resources and assistance. It can also call upon the private sector—the Resource Directory has been expanded to include non-government assets—and to a network of volunteers. “No one has ever said, ‘We don’t want to help,’” Rafferty says. New Jersey officials can also request assistance through the Emergency Management Assistance Compact (EMAC), an agreement among the states to help each other in times of extreme crisis.
“You always plan for the worst,” Rafferty says, “and that way when the worst doesn’t happen, you feel you can handle it if and when it does.”
Contributing editor Wayne J. Guglielmo lives in Mahwah, near the Ramapo Fault.

East Coast Expecting The Sixth Seal (Revelation 6:12)

United States Fault Lines Map – Earthquakes could also happen in East Coast and in the Midwest Cites

Fault Lines US

[BestSyndication News] Earthquakes are always a concern out in Alaska and in California, as it is full of fault lines that are continually shifting. There are some fault lines that are overdue to shift, especially the California San Andres fault line that runs through the mountain ranges and close to Wrightwood. But did you know there is a United States Fault Lines Map that illustrates great potentials for earthquakes outside of our state?

New Madrid Fault Line
The New Madrid Fault Line has records of over 4000 earthquake reports since 1974. This fault line is also called the New Madrid Seismic Zone and has potential to devastate the states of Illinois, Indiana, Missouri, Arkansas, Kentucky, Tennessee, and Mississippi. The biggest part of the New Madrid Fault Line sits in Missouri.
We often forget that this Midwestern fault line is there, but in 1811-1812 there was a series of earthquakes that shook with estimated magnitudes of 8.1 – 8.3, with several aftershocks of 6.0 magnitudes. Since those big ones, the largest earthquake that this fault line produced was in a 6.6-magnitude quake that happened on October 31, 1895. It’s epicenter was in Charleston, Missouri.The damage from these earthquakes were extensive, and there has been recent speculation by the scientific community that believe that this fault line might be shutting down and moving elsewhere. In an issue of Nature, scientist believe the current seismic activity at the New Madrid Fault line is only aftershocks from the earthquake back in 1811 and 1812.
Ramapo Fault Line
The Ramapo Fault Line spans 300 kilometers and affects the states of New York, New Jersey, and Pennsylvania. These faults run between the Appalachian Mountains and Piedmont areas to the east.
This fault remains relatively inactive, but scientists believe that it could produce some serious earthquakes. There was a study completed in 2008 that believes a 6 – 7 magnitude earthquake will very likely occur from this fault line. The last time this fault was the most active was believed to be 200 million years ago.
San Andreas Fault Line
The last few years Southern California has been preparing for the next big one with government sponsored Earthquake Drills. Scientist are predicting that the next big one with a magnitude of a 7.0 or higher for this fault line will happen any time, it could be now or 10 years from now. They believe the areas that are going to be hit the hardest are going to be Palm Springs and a number of other cities in San Bernardino, Riverside and Imperial counties in California, and Mexicali municipality in Baja California.
To learn more about earthquakes you can visit http://earthquake.usgs.gov/learn/

The Prelude to the Sixth Seal (Revelation 6:12)

y, August 23rd 2017, 5:44 am MDT

LOUISA, VA (WWBT) – A massive earthquake centered in Louisa struck the East Coast six years ago Wednesday.
The quake measured 5.8 on the Richter scale and was centered about 5 miles south of Mineral at about 1:51 p.m. It was felt as far north as Rhode Island and New York City. While it didn’t cause any deaths or major injuries, it did cause $80 million in damage to homes, schools and public buildings in Louisa.
The air control tower at Richmond International Airport was briefly evacuated and many downtown Richmond buildings were evacuated following the quake. Both Kings Dominion and Busch Gardens reportedly shut down all rides while inspections are being conducted.
Parts of the Pentagon, the White House, the Capitol and federal agencies were evacuated.The National Park Service says all memorials and monuments on the National Mall have been evacuated and closed in Washington, D.C., after the earthquake. No damage was reported.
The earthquake struck an area that historically is not seismically active. According to the U.S. Geological Survey, the largest recorded earthquake in Virginia history was a 5.9 on the scale, centered around Giles County in 1897.
A 4.2 magnitude aftershock was felt in Louisa later that night.
Copyright 2017 WWBT NBC12. All rights reserv