The Main Cause of the Sixth Seal (Revelation 6:12)

Indian Point Energy CenterNuclear power plant in Buchanan, New YorkIndian Point Energy Center (IPEC) is a three-unit nuclear power plant station located in Buchanan, New York, just south of Peekskill. It sits on the east bank of the Hudson River, about 36 miles (58 km) north of Midtown Manhattan. The plant generates over 2,000 megawatts (MWe) of electrical power. For reference, the record peak energy consumption of New York City and Westchester County (the ConEdison Service Territory) was set during a seven-day heat wave on July 19, 2013, at 13,322 megawatts.[3] Electrical energy consumption varies greatly with time of day and season.[4]Quick Facts: Country, Location …The plant is owned and operated by Entergy Nuclear Northeast, a subsidiary of Entergy Corporation, and includes two operating Westinghouse pressurized water reactors—designated “Indian Point 2” and “Indian Point 3″—which Entergy bought from Consolidated Edison and the New York Power Authority respectively. The facility also contains the permanently shut-down Indian Point Unit 1 reactor. As of 2015, the number of permanent jobs at the Buchanan plant is approximately 1,000.The original 40-year operating licenses for units 2 and 3 expired in September 2013 and December 2015, respectively. Entergy had applied for license extensions and the Nuclear Regulatory Commission (NRC) was moving toward granting a twenty-year extension for each reactor. However, after pressure from local environmental groups and New York governor Andrew Cuomo, it was announced that the plant is scheduled to be shut down by 2021.[5] Local groups had cited increasingly frequent issues with the aging units, ongoing environmental releases, and the proximity of the plant to New York City.[6]ReactorsHistory and designThe reactors are built on land that originally housed the Indian Point Amusement Park, but was acquired by Consolidated Edison (ConEdison) on October 14, 1954.[7] Indian Point 1, built by ConEdison, was a 275-megawatt Babcock & Wilcox supplied [8] pressurized water reactor that was issued an operating license on March 26, 1962 and began operations on September 16, 1962.[9] The first core used a thorium-based fuel with stainless steel cladding, but this fuel did not live up to expectations for core life.[10] The plant was operated with uranium dioxide fuel for the remainder of its life. The reactor was shut down on October 31, 1974, because the emergency core cooling system did not meet regulatory requirements. All spent fuel was removed from the reactor vessel by January 1976, but the reactor still stands.[11] The licensee, Entergy, plans to decommission Unit 1 when Unit 2 is decommissioned.[12]The two additional reactors, Indian Point 2 and 3, are four-loop Westinghouse pressurized water reactors both of similar design. Units 2 and 3 were completed in 1974 and 1976, respectively. Unit 2 has a generating capacity of 1,032 MW, and Unit 3 has a generating capacity of 1,051 MW. Both reactors use uranium dioxide fuel of no more than 4.8% U-235 enrichment. The reactors at Indian Point are protected by containment domes made of steel-reinforced concrete that is 40 inches thick, with a carbon steel liner.[13]Nuclear capacity in New York stateUnits 2 and 3 are two of six operating nuclear energy sources in New York State. New York is one of the five largest states in terms of nuclear capacity and generation, accounting for approximately 5% of the national totals. Indian Point provides 39% of the state’s nuclear capacity. Nuclear power produces 34.2% of the state’s electricity, higher than the U.S. average of 20.6%. In 2017, Indian Point generated approximately 10% of the state’s electricity needs, and 25% of the electricity used in New York City and Westchester County.[14] Its contract with Consolidated Edison is for just 560 megawatts. The New York Power Authority, which built Unit 3, stopped buying electricity from Indian Point in 2012. NYPA supplies the subways, airports, and public schools and housing in NYC and Westchester County. Entergy sells the rest of Indian Point’s output into the NYISO administered electric wholesale markets and elsewhere in New England.[15][16][17][18] In 2013, New York had the fourth highest average electricity prices in the United States. Half of New York’s power demand is in the New York City region; about two-fifths of generation originates there.[19][20]RefuelingThe currently operating Units 2 and 3 are each refueled on a two-year cycle. At the end of each fuel cycle, one unit is brought offline for refueling and maintenance activities. On March 2, 2015, Indian Point 3 was taken offline for 23 days to perform its refueling operations. Entergy invested $50 million in the refueling and other related projects for Unit 3, of which $30 million went to employee salaries. The unit was brought back online on March 25, 2015.[21]EffectsEconomic impactA June 2015 report by a lobby group called Nuclear Energy Institute found that the operation of Indian Point generates $1.3 billion of annual economic output in local counties, $1.6 billion statewide, and $2.5 billion across the United States. In 2014, Entergy paid $30 million in state and local property taxes. The total tax revenue (direct and secondary) was nearly $340 million to local, state, and federal governments.[15] According to the Village of Buchanan budget for 2016–2017, a payment in lieu of taxes in the amount of $2.62 million was received in 2015-2016, and was projected to be $2.62 million in 2016–2017 – the majority of which can be assumed to come from the Indian Point Energy Center.[22]Over the last decade, the station has maintained a capacity factor of greater than 93 percent. This is consistently higher than the nuclear industry average and than other forms of generation. The reliability helps offset the severe price volatility of other energy sources (e.g., natural gas) and the indeterminacy of renewable electricity sources (e.g., solar, wind).[15]Indian Point directly employs about 1,000 full-time workers. This employment creates another 2,800 jobs in the five-county region, and 1,600 in other industries in New York, for a total of 5,400 in-state jobs. Additionally, another 5,300 indirect jobs are created out of state, creating a sum total of 10,700 jobs throughout the United States.[15]Environmental concernsEnvironmentalists have expressed concern about increased carbon emissions with the impending shutdown of Indian Point (generating electricity with nuclear energy creates no carbon emissions). A study undertaken by Environmental Progress found that closure of the plant would cause power emissions to jump 29% in New York, equivalent to the emissions from 1.4 million additional cars on New York roads.[23]Some environmental groups have expressed concerns about the operation of Indian Point, including radiation pollution and endangerment of wildlife, but whether Indian Point has ever posed a significant danger to wildlife or the public remains controversial. Though anti-nuclear group Riverkeeper notes “Radioactive leakage from the plant containing several radioactive isotopes, such as strontium-90, cesium-137, cobalt-60, nickel-63 and tritium, a rarely-occurring isotope of hydrogen, has flowed into groundwater that eventually enters the Hudson River in the past[24], there is no evidence radiation from the plant has ever posed a significant hazard to local residents or wildlife. In the last year[when?], nine tritium leaks have occurred, however, even at their highest levels the leaks have never exceeded one-tenth of one percent of US Nuclear Regulatory Commission limits.In February 2016, New York State Governor Andrew Cuomo called for a full investigation by state environment[25] and health officials and is partnering with organizations like Sierra Club, Riverkeepers, Hudson River Sloop Clearwater, Indian Point Safe Energy Coalition, Scenic Hudson and Physicians for Social Responsibility in seeking the permanent closure of the plant.[citation needed] However, Cuomo’s motivation for closing the plant was called into question after it was revealed two top former aides, under federal prosecution for influence-peddling, had lobbied on behalf of natural gas company Competitive Power Ventures (CPV) to kill Indian Point. In his indictment, US attorney Preet Bharara wrote “the importance of the plant [CPV’s proposed Valley Energy Center, a plant powered by natural gas] to the State depended at least in part, on whether [Indian Point] was going to be shut down.”[26]In April 2016 climate scientist James Hansen took issue with calls to shut the plant down, including those from presidential candidate Bernie Sanders. “The last few weeks have seen an orchestrated campaign to mislead the people of New York about the essential safety and importance of Indian Point nuclear plant to address climate change,” wrote Hansen, adding “Sanders has offered no evidence that NRC [U.S. Nuclear Regulatory Commission] has failed to do its job, and he has no expertise in over-riding NRC’s judgement. For the sake of future generations who could be harmed by irreversible climate change, I urge New Yorkers to reject this fear mongering and uphold science against ideology.”[27]Indian Point removes water from the nearby Hudson River. Despite the use of fish screens, the cooling system kills over a billion fish eggs and larvae annually.[28] According to one NRC report from 2010, as few as 38% of alewives survive the screens.[29] On September 14, 2015, a state hearing began in regards to the deaths of fish in the river, and possibly implementing a shutdown period from May to August. An Indian Point spokesman stated that such a period would be unnecessary, as Indian Point “is fully protective of life in the Hudson River and $75 million has been spent over the last 30 years on scientific studies demonstrating that the plant has no harmful impact to adult fish.” The hearings lasted three weeks.[30] Concerns were also raised over the planned building of new cooling towers, which would cut down forest land that is suspected to be used as breeding ground by muskrat and mink. At the time of the report, no minks or muskrats were spotted there.[29]SafetyIndian Point Energy Center has been given an incredible amount of scrutiny from the media and politicians and is regulated more heavily than various other power plants in the state of New York (i.e., by the NRC in addition to FERC, the NYSPSC, the NYISO, the NYSDEC, and the EPA). On a forced outage basis – incidents related to electrical equipment failure that force a plant stoppage – it provides a much more reliable operating history than most other power plants in New York.[31][32] Beginning at the end of 2015, Governor Cuomo began to ramp up political action against the Indian Point facility, opening an investigation with the state public utility commission, the department of health, and the department of environmental conservation.[33][34][35][30][36][37] To put the public service commission investigation in perspective: most electric outage investigations conducted by the commission are in response to outages with a known number of affected retail electric customers.[38] By November 17, 2017, the NYISO accepted Indian Point’s retirement notice.[39]In 1997, Indian Point Unit 3 was removed from the NRC’s list of plants that receive increased attention from the regulator. An engineer for the NRC noted that the plant had been experiencing increasingly fewer problems during inspections.[40] On March 10, 2009 the Indian Point Power Plant was awarded the fifth consecutive top safety rating for annual operations by the Federal regulators. According to the Hudson Valley Journal News, the plant had shown substantial improvement in its safety culture in the previous two years.[41] A 2003 report commissioned by then-Governor George Pataki concluded that the “current radiological response system and capabilities are not adequate to…protect the people from an unacceptable dose of radiation in the event of a release from Indian Point”.[42] More recently, in December 2012 Entergy commissioned a 400-page report on the estimates of evacuation times. This report, performed by emergency planning company KLD Engineering, concluded that the existing traffic management plans provided by Orange, Putnam, Rockland, and Westchester Counties are adequate and require no changes.[43] According to one list that ranks U.S. nuclear power plants by their likelihood of having a major natural disaster related incident, Indian Point is the most likely to be hit by a natural disaster, mainly an earthquake.[44][45][46][47] Despite this, the owners of the plant still say that safety is a selling point for the nuclear power plant.[48]Incidents▪ In 1973, five months after Indian Point 2 opened, the plant was shut down when engineers discovered buckling in the steel liner of the concrete dome in which the nuclear reactor is housed.[49]▪ On October 17, 1980,[50] 100,000 gallons of Hudson River water leaked into the Indian Point 2 containment building from the fan cooling unit, undetected by a safety device designed to detect hot water. The flooding, covering the first nine feet of the reactor vessel, was discovered when technicians entered the building. Two pumps that should have removed the water were found to be inoperative. NRC proposed a $2,100,000 fine for the incident.▪ In February 2000, Unit 2 experienced a Steam Generator Tube Rupture (SGTR), which allowed primary water to leak into the secondary system through one of the steam generators.[51] All four steam generators were subsequently replaced.[citation needed]▪ In 2005, Entergy workers while digging discovered a small leak in a spent fuel pool. Water containing tritium and strontium-90 was leaking through a crack in the pool building and then finding its way into the nearby Hudson River. Workers were able to keep the spent fuel rods safely covered despite the leak.[52] On March 22, 2006 The New York Times also reported finding radioactive nickel-63 and strontium in groundwater on site.[53]▪ In 2007, a transformer at Unit 3 caught fire, and the Nuclear Regulatory Commission raised its level of inspections, because the plant had experienced many unplanned shutdowns. According to The New York Times, Indian Point “has a history of transformer problems”.[54]▪ On April 23, 2007, the Nuclear Regulatory Commission fined the owner of the Indian Point nuclear plant $130,000 for failing to meet a deadline for a new emergency siren plan. The 150 sirens at the plant are meant to alert residents within 10 miles to a plant emergency.[55]▪ On January 7, 2010, NRC inspectors reported that an estimated 600,000 gallons of mildly radioactive steam was intentionally vented to the atmosphere after an automatic shutdown of Unit 2. After the vent, one of the vent valves unintentionally remained slightly open for two days. The levels of tritium in the steam were within the allowable safety limits defined in NRC standards.[56]▪ On November 7, 2010, an explosion occurred in a main transformer for Indian Point 2, spilling oil into the Hudson River.[57] Entergy later agreed to pay a $1.2 million penalty for the transformer explosion.[54]▪ July 2013, a former supervisor, who worked at the Indian Point nuclear power plant for twenty-nine years, was arrested for falsifying the amount of particulate in the diesel fuel for the plant’s backup generators.[58]▪ On May 9, 2015, a transformer failed at Indian Point 3, causing the automated shutdown of reactor 3. A fire that resulted from the failure was extinguished, and the reactor was placed in a safe and stable condition.[59] The failed transformer contained about 24,000 gallons of dielectric fluid, which is used as an insulator and coolant when the transformer is energized. The U.S. Coast Guard estimates that about 3,000 gallons of dielectric fluid entered the river following the failure.[60]▪ In June 2015, a mylar balloon floated into a switchyard, causing an electrical problem resulting in the shutdown of Reactor 3.[61]▪ In July 2015, Reactor 3 was shut down after a water pump failure.[citation needed]▪ On December 5, 2015, Indian Point 2 was shut down after several control rods lost power.[62]▪ On February 6, 2016, Governor Andrew Cuomo informed the public that radioactive tritium-contaminated water leaked into the groundwater at the Indian Point Nuclear facility.[25]Spent fuelIndian Point stores used fuel rods in two spent fuel pools at the facility.[52] The spent fuel pools at Indian Point are not stored under a containment dome like the reactor, but rather they are contained within an indoor 40-foot-deep pool and submerged under 27 feet of water. Water is a natural and effective barrier to radiation. The spent fuel pools at Indian Point are set in bedrock and are constructed of concrete walls that are four to six feet wide, with a quarter-inch thick stainless steel inner liner. The pools each have multiple redundant backup cooling systems.[52][63]Indian Point began dry cask storage of spent fuel rods in 2008, which is a safe and environmentally sound option according to the Nuclear Regulatory Commission.[64] Some rods have already been moved to casks from the spent fuel pools. The pools will be kept nearly full of spent fuel, leaving enough space to allow emptying the reactor completely.[65] Dry cask storage systems are designed to resist floods, tornadoes, projectiles, temperature extremes, and other unusual scenarios. The NRC requires the spent fuel to be cooled and stored in the spent fuel pool for at least five years before being transferred to dry casks.[66]Earthquake riskIn 2008, researchers from Columbia University’s Lamont-Doherty Earth Observatory located a previously unknown active seismic zone running from Stamford, Connecticut, to the Hudson Valley town of Peekskill, New York—the intersection of the Stamford-Peekskill line with the well-known Ramapo Fault—which passes less than a mile north of the Indian Point nuclear power plant.[67] The Ramapo Fault is the longest fault in the Northeast, but scientists dispute how active this roughly 200-million-year-old fault really is. Many earthquakes in the state’s surprisingly varied seismic history are believed to have occurred on or near it. Visible at ground level, the fault line likely extends as deep as nine miles below the surface.[68]In July 2013, Entergy engineers reassessed the risk of seismic damage to Unit 3 and submitted their findings in a report to the NRC. It was found that risk leading to reactor core damage is 1 in 106,000 reactor years using U.S. Geological Survey data; and 1 in 141,000 reactor years using Electric Power Research Institute data. Unit 3’s previous owner, the New York Power Authority, had conducted a more limited analysis in the 1990s than Unit 2’s previous owner, Con Edison, leading to the impression that Unit 3 had fewer seismic protections than Unit 2. Neither submission of data from the previous owners was incorrect.[69]According to a company spokesman, Indian Point was built to withstand an earthquake of 6.1 on the Richter scale.[70] Entergy executives have also noted “that Indian Point had been designed to withstand an earthquake much stronger than any on record in the region, though not one as powerful as the quake that rocked Japan.”[71]The Nuclear Regulatory Commission’s estimate of the risk each year of an earthquake intense enough to cause core damage to the reactor at Indian Point was Reactor 2: 1 in 30,303; Reactor 3: 1 in 10,000, according to an NRC study published in August 2010. reported based on the NRC data that “Indian Point nuclear reactor No. 3 has the highest risk of earthquake damage in the country, according to new NRC risk estimates provided to” According to the report, the reason is that plants in known earthquake zones like California were designed to be more quake-resistant than those in less affected areas like New York.[72][73] The NRC did not dispute the numbers but responded in a release that “The NRC results to date should not be interpreted as definitive estimates of seismic risk,” because the NRC does not rank plants by seismic risk.[74]IPEC Units 2 and 3 both operated at 100% full power before, during, and after the Virginia earthquake on August 23, 2011. A thorough inspection of both units by plant personnel immediately following this event verified no significant damage occurred at either unit.Emergency planningThe Nuclear Regulatory Commission defines two emergency planning zones around nuclear power plants: a plume exposure pathway zone with a radius of 10 miles (16 km), concerned primarily with exposure to, and inhalation of, airborne radioactive contamination, and an ingestion pathway zone of about 50 miles (80 km), concerned primarily with ingestion of food and liquid contaminated by radioactivity.[75]According to an analysis of U.S. Census data for MSNBC, the 2010 U.S. population within 10 miles (16 km) of Indian Point was 272,539, an increase of 17.6 percent during the previous ten years. The 2010 U.S. population within 50 miles (80 km) was 17,220,895, an increase of 5.1 percent since 2000. Cities within 50 miles include New York (41 miles to city center); Bridgeport, Conn. (40 miles); Newark, N.J. (39 miles); and Stamford, Conn. (24 miles).[76]In the wake of the 2011 Fukushima incident in Japan, the State Department recommended that any Americans in Japan stay beyond fifty miles from the area.[citation needed] Columnist Peter Applebome, writing in The New York Times, noted that such an area around Indian Point would include “almost all of New York City except for Staten Island; almost all of Nassau County and much of Suffolk County; all of Bergen County, N.J.; all of Fairfield, Conn.” He quotes Purdue University professor Daniel Aldrich as saying “Many scholars have already argued that any evacuation plans shouldn’t be called plans, but rather “fantasy documents””.[42]The current 10-mile plume-exposure pathway Emergency Planning Zone (EPZ) is one of two EPZs intended to facilitate a strategy for protective action during an emergency and comply with NRC regulations. “The exact size and shape of each EPZ is a result of detailed planning which includes consideration of the specific conditions at each site, unique geographical features of the area, and demographic information. This preplanned strategy for an EPZ provides a substantial basis to support activity beyond the planning zone in the extremely unlikely event it would be needed.”[77]In an interview, Entergy executives said they doubt that the evacuation zone would be expanded to reach as far as New York City.[71]Indian Point is protected by federal, state, and local law enforcement agencies, including a National Guard base within a mile of the facility, as well as by private off-site security forces.[78]During the September 11 attacks, American Airlines Flight 11 flew near the Indian Point Energy Center en route to the World Trade Center. Mohamed Atta, one of the 9/11 hijackers/plotters, had considered nuclear facilities for targeting in a terrorist attack.[79] Entergy says it is prepared for a terrorist attack, and asserts that a large airliner crash into the containment building would not cause reactor damage.[80] Following 9/11 the NRC required operators of nuclear facilities in the U.S. to examine the effects of terrorist events and provide planned responses.[81] In September 2006, the Indian Point Security Department successfully completed mock assault exercises required by the Nuclear Regulatory Commission.[citation needed] However, according to environmental group Riverkeeper, these NRC exercises are inadequate because they do not envision a sufficiently large group of attackers.[citation needed]According to The New York Times, fuel stored in dry casks is less vulnerable to terrorist attack than fuel in the storage pools.[65]RecertificationUnits 2 and 3 were both originally licensed by the NRC for 40 years of operation. The NRC limits commercial power reactor licenses to an initial 40 years, but also permits such licenses to be renewed. This original 40-year term for reactor licenses was based on economic and antitrust considerations, not on limitations of nuclear technology. Due to this selected period, however, some structures and components may have been engineered on the basis of an expected 40-year service life.[82] The original federal license for Unit Two expired on September 28, 2013,[83][84] and the license for Unit Three was due to expire in December 2015.[85] On April 30, 2007, Entergy submitted an application for a 20-year renewal of the licenses for both units. On May 2, 2007, the NRC announced that this application is available for public review.[86] Because the owner submitted license renewal applications at least five years prior to the original expiration date, the units are allowed to continue operation past this date while the NRC considers the renewal application.On September 23, 2007, the antinuclear group Friends United for Sustainable Energy (FUSE) filed legal papers with the NRC opposing the relicensing of the Indian Point 2 reactor. The group contended that the NRC improperly held Indian Point to less stringent design requirements. The NRC responded that the newer requirements were put in place after the plant was complete.[87]On December 1, 2007, Westchester County Executive Andrew J. Spano, New York Attorney General Andrew Cuomo, and New York Governor Eliot Spitzer called a press conference with the participation of environmental advocacy groups Clearwater and Riverkeeper to announce their united opposition to the re-licensing of the Indian Point nuclear power plants. The New York State Department of Environmental Conservation and the Office of the Attorney General requested a hearing as part of the process put forth by the Nuclear Regulatory Commission.[citation needed] In September 2007 The New York Times reported on the rigorous legal opposition Entergy faces in its request for a 20-year licensing extension for Indian Point Nuclear Reactor 2.[87]A water quality certificate is a prerequisite for a twenty-year renewal by the NRC.[citation needed] On April 3, 2010, the New York State Department of Environmental Conservation ruled that Indian Point violates the federal Clean Water Act,[88] because “the power plant’s water-intake system kills nearly a billion aquatic organisms a year, including the shortnose sturgeon, an endangered species.”[citation needed] The state is demanding that Entergy constructs new closed-cycle cooling towers at a cost of over $1 billion, a decision that will effectively close the plant for nearly a year. Regulators denied Entergy’s request to install fish screens that they said would improve fish mortality more than new cooling towers. Anti-nuclear groups and environmentalists have in the past tried to close the plant,[citation needed] which is in a more densely populated area than any of the 66 other nuclear plant sites in the US.[citation needed] Opposition to the plant[from whom?] increased after the September 2001 terror attacks,[citation needed] when one of the hijacked jets flew close to the plant on its way to the World Trade Center.[citation needed] Public worries also increased after the 2011 Japanese Fukushima Daiichi nuclear disaster and after a report highlighting the Indian Point plant’s proximity to the Ramapo Fault.[citation needed]Advocates of recertifying Indian Point include former New York City mayors Michael Bloomberg and Rudolph W. Giuliani. Bloomberg says that “Indian Point is critical to the city’s economic viability”.[89] The New York Independent System Operator maintains that in the absence of Indian Point, grid voltages would degrade, which would limit the ability to transfer power from upstate New York resources through the Hudson Valley to New York City.[90]As the current governor, Andrew Cuomo continues to call for closure of Indian Point.[91] In late June 2011, a Cuomo advisor in a meeting with Entergy executives informed them for the first time directly of the Governor’s intention to close the plant, while the legislature approved a bill to streamline the process of siting replacement plants.[92]Nuclear energy industry figures and analysts responded to Cuomo’s initiative by questioning whether replacement electrical plants could be certified and built rapidly enough to replace Indian Point, given New York state’s “cumbersome regulation process”, and also noted that replacement power from out of state sources will be hard to obtain because New York has weak ties to generation capacity in other states.[citation needed] They said that possible consequences of closure will be a sharp increase in the cost of electricity for downstate users and even “rotating black-outs”.[93]Several members of the House of Representatives representing districts near the plant have also opposed recertification, including Democrats Nita Lowey, Maurice Hinchey, and Eliot Engel and then Republican member Sue Kelly.[94]In November 2016 the New York Court of Appeals ruled that the application to renew the NRC operating licences must be reviewed against the state’s coastal management program, which The New York State Department of State had already decided was inconsistent with coastal management requirements. Entergy has filed a lawsuit regarding the validity of Department of State’s decision.[95]ClosureBeginning at the end of 2015, Governor Cuomo began to ramp up political action against the Indian Point facility, opening investigations with the state public utility commission, the department of health and the department of environmental conservation.[33][34][35][30][36][37] To put the public service commission investigation in perspective, most electric outage investigations conducted by the commission are in response to outages with a known number of affected retail electric customers.[38] By November 17, 2017, the NYISO accepted Indian Point’s retirement notice.[39]In January 2017, the governor’s office announced closure by 2020-21.[96] The closure, along with pollution control, challenges New York’s ability to be supplied.[citation needed] Among the solution proposals are storage, renewables (solar and wind), a new transmission cables from Canada [97][98] and a 650MW natural gas plant located in Wawayanda, New York.[99] There was also a 1,000 MW merchant HVDC transmission line proposed in 2013 to the public service commission that would have interconnected at Athens, New York and Buchanan, New York, however this project was indefinitely stalled when its proposed southern converter station site was bought by the Town of Cortlandt in a land auction administered by Con Edison.[100][101][102] As of October 1, 2018, the 650 MW plant built in Wawayanda, New York, by CPV Valley, is operating commercially.[103] The CPV Valley plant has been associated with Governor Cuomo’s close aid, Joe Percoco, and the associated corruption trial.[104] Another plant being built, Cricket Valley Energy Center, rated at 1,100 MW, is on schedule to provide energy by 2020 in Dover, New York.[105] An Indian Point contingency plan, initiated in 2012 by the NYSPSC under the administration of Cuomo, solicited energy solutions from which a Transmission Owner Transmission Solutions (TOTS) plan was selected. The TOTS projects provide 450 MW[106] of additional transfer capability across a NYISO defined electric transmission corridor in the form of three projects: series compensation at a station in Marcy, New York, reconductoring a transmission line, adding an additional transmission line, and “unbottling” Staten Island capacity. These projects, with the exception of part of the Staten Island “unbottling” were in service by mid-2016. The cost of the TOTS projects are distributed among various utilities in their rate cases before the public service commission and the cost allocation amongst themselves was approved by FERC. NYPA and LIPA are also receiving a portion. The cost of the TOTS projects has been estimated in the range of $27 million to $228 million.[107][108][109][110][111] An energy highway initiative was also prompted by this order (generally speaking, additional lines on the Edic-Pleasant Valley and the Oakdale-Fraser transmission corridors) which is still going through the regulatory process in both the NYISO and NYSPSC.Under the current plan, one reactor is scheduled to be shut down in April 2020 and the second by April 2021.[112] A report by the New York Building Congress, a construction industry association, has said that NYC will need additional natural gas pipelines to accommodate the city’s increasing demand for energy. Environmentalists have argued that the power provided by Indian point can be replaced by renewable energy, combined with conservation measures and improvements to the efficiency of the electrical grid.[113]

Israeli Forces Open Fire at Palestinian Fishermen, Farmers outside the Temple Walls: Revelation 11

Israeli Forces Open Fire at Palestinian Fishermen, Farmers in Gaza

January 11, 2021

The Israeli army regularly detains and opens fire on unarmed Palestinian fishermen. (Photo: Fawzi Mahmoud, The Palestine Chronicle)

Israeli navy today opened fire at Palestinian fishermen in the northern Gaza shore, while soldiers targeted farmers working in their lands in the southern Gaza Strip, according to the Palestinian news agency WAFA.

Israeli navy opened fire at the fishermen’s boats as they were sailing three nautical miles in the Sudaniya coast, northwest of the city of Gaza, forcing them to leave the area and return to shore to avoid being hit or their boats damaged.




Aug 31, 2020


You need to take concrete action against #Israel for that.



UN: Israel must immediately allow entry of fuel and other essential items into Gaza…

Aug 31, 2020

Days Of Palestine




You must protect the #right_to_live of the people in #Gaza ◢◤

‘Dying to fish’ should never happen



‘Dying to fish’: How Israeli piracy destroyed Gaza’s once thriving fishing industry…

Aug. 28, 2020

‘Dying to fish’: How Israeli piracy destroyed Gaza’s once thriving fishing industry

5:08 PM · Aug 31, 2020


See KAKAPO➤Endangered’s other Tweets

Israeli forces stationed at military sites behind the borderline to the east of the city of Khan Younis, opened fire towards farmers as they were plowing their lands, and shepherds as well.

No casualties were reported, however.

Israeli occupation forces target Gaza fishermen, farmers, and shepherds on a daily basis.

(WAFA, PC, Social Media)

Nuclear Notebook: Babylon the Great’s nuclear weapons, 2021

Nuclear Notebook: United States nuclear weapons, 2021

By Hans M. Kristensen, Matt Korda, January 12, 2021

At the beginning of 2021, the US Defense Department maintained an estimated stockpile of 3,800 nuclear warheads for delivery by 800 ballistic missiles and aircraft. Most of the warheads in the stockpile are not deployed, but rather stored for potential upload onto missiles and aircraft as necessary. Many are destined for retirement. We estimate that approximately 1,800 warheads are currently deployed, of which roughly 1,400 strategic warheads are deployed on ballistic missiles and another 300 at strategic bomber bases in the United States. An additional 100 tactical bombs are deployed at air bases in Europe. The remaining warheads—approximately 2,000—are in storage as a so-called hedge against technical or geopolitical surprises. Several hundred of those warheads are scheduled to be retired before 2030. (See Table 1.)

Kristensen Korda_Nuclear Notebook_US nuclear weapons_Table 1_final

In addition to the warheads in the Defense Department stockpile, approximately 1,750 retired— but still intact—warheads are stored under custody of the Energy Department and are awaiting dismantlement, giving a total US inventory of an estimated 5,550 warheads. Between 2010 and 2018, the US government publicly disclosed the size of the nuclear weapons stockpile. But in 2019, the Trump administration rejected a request from the Federation of American Scientists to declassify the latest stockpile number, and these numbers remain classified at the time of this publication (Aftergood 2019; Kristensen 2019a).

The nuclear weapons are thought to be stored at an estimated 24 geographical locations in 11 US states and five European countries. The location with the most nuclear weapons by far is the large Kirtland Underground Munitions and Maintenance Storage Complex south of Albuquerque, New Mexico. Most of the weapons in this location are retired weapons awaiting dismantlement at the Pantex Plant in Texas. The state with the second-largest inventory is Washington, which is home to the Strategic Weapons Facility Pacific and the ballistic missile submarines at Naval Submarine Base Kitsap. (Washington is the state with most nuclear weapons if counting only stockpiled weapons).

Implementing New START

The United States appears to be in compliance with the New START treaty limits, with 675 deployed strategic launchers with 1,457 attributed warheads counted as of October 1, 2020, well below the limits of 700 deployed strategic launchers with 1,550 warheads. Another 125 launchers were not deployed, for a total inventory of 800 deployed and non-deployed launchers (State Department 2020a). This is an increase of 20 deployed strategic launchers and 85 deployed strategic warheads over the past 6 months (State Department 2020b). However, these are not actual increases; they reflect normal fluctuations caused by launchers moving in and out of maintenance. The United States has not reduced its total inventory of strategic launchers since 2017 (Kristensen 2020a).

The numbers reported by the State Department differ from the estimates presented in this Nuclear Notebook because the New START counting rules artificially attribute one warhead to each deployed bomber, even though US bombers do not carry nuclear weapons under normal circumstances, and because this Nuclear Notebook counts weapons stored at bomber bases that can quickly be loaded onto the aircraft.

Since the treaty entered into force in February 2011, the biannual aggregate data show the United States has cut a total of 324 strategic launchers, 207 deployed launchers, and 343 deployed strategic warheads from its inventory. The warhead reduction represents approximately 9 percent of the of the 3,800 warheads remaining in the US stockpile, and approximately 6 percent of the total US arsenal of 5,550 stockpiled and retired warheads awaiting dismantlement.

The 2018 Nuclear Posture Review states that the United States “will continue to implement the New START Treaty” while it remains in effect (Department of Defense 2018, 73). The treaty will remain in effect until February 2021, at which point it may be extended for up to five years (either a single, five-year extension, or multiple extensions adding up to five years) with mutual agreement. Although it is unlikely to withdraw from New START entirely, the Trump administration appears to have little interest in a clean extension of the treaty. After waiting more than three years to begin bilateral arms control talks in earnest, the Trump administration has recently walked its position back from an initial prerequisite on including China to a willingness to agree to an unverifiable bilateral warhead freeze. This is equal parts shocking and confusing, given that the Trump administration spent its entire four-year term in office criticizing New START for being a “bad deal”––specifically because of its presumed verification deficiencies and a lack of Chinese participation (Gertz 2020).

The United States is currently 25 launchers and 93 warheads below the treaty limit for deployed strategic weapons, but has 165 deployed launchers more than Russia––a significant gap that exceeds the size of an entire US Air Force ICBM wing. It is notable that Russia has not sought to reduce this gap by deploying more strategic launchers. Instead, the Russian launcher deficit has increased by one-third since its lowest point in February 2018.

If New START were allowed to expire, both Russia and the United States could upload several hundreds of extra warheads onto their launchers, which means that the treaty has proven useful thus far in keeping a lid on both countries’ nuclear modernization plans. Additionally, if New START expired, then both countries would lose a critical node of transparency into each other’s nuclear forces. As of October 29, 2020, the United States and Russia have completed a combined 328 on-site inspections and exchanged 21,038 notifications (State Department 2020c). Only two inspections each have been conducted by the United States and Russia during this treaty year, because inspections were paused due to the COVID-19 pandemic.

The Nuclear Posture Review and nuclear modernization

Although the Trump administration’s 2018 Nuclear Posture Review (NPR) followed the broad outlines of the Obama administration’s 2010 NPR to modernize the entire nuclear weapons arsenal, it includes several important changes.

The most significant change is a recommendation to increase the types and role of US nuclear weapons. The Trump NPR takes a confrontational tone, presenting an assertive posture that embraces “Great Power competition,” and includes plans to develop new nuclear weapons and modify others. The report backs away from the goal of seeking to limit the role of nuclear weapons to the sole purpose of deterring nuclear attacks, and instead emphasizes “expanding” US nuclear options to deter, and, if deterrence fails, to prevail against both nuclear and “non-nuclear strategic attacks.” To be clear, any use of a nuclear weapon to respond to a non-nuclear strategic attack would constitute nuclear first use.

The NPR explains that “non-nuclear strategic attacks include, but are not limited to, attacks on the U.S., allied, or partner civilian population or infrastructure, and attacks on U.S. or allied nuclear forces, their command and control, or warning and attack assessment capabilities” (Department of Defense 2018, 21). US nuclear capabilities will be postured to “hedge against the potential rapid growth or emergence of nuclear and non-nuclear strategic threats, including chemical, biological, cyber, and large-scale conventional aggression” (Department of Defense 2018, 38). To achieve these goals, the NPR states that “the United States will enhance the flexibility and range of its tailored deterrence options. … Expanding flexible US nuclear options now, to include low-yield options, is important for the preservation of credible deterrence against regional aggression,” the report claims (Department of Defense 2018, 34).

The new tailored capabilities include modifying “a small number” of the existing W76-1 90-kiloton two-stage thermonuclear warheads to single-stage warheads by “turning off” the secondary to limit the yield to what the primary can produce (an estimated 5–7 kilotons). This new warhead (W76-2), the NPR claims, is necessary to “help counter any mistaken perception of an exploitable ‘gap’ in US regional deterrence capabilities.” Undersecretary of Defense for Policy John Rood told reporters in December 2019 that the low-yield Trident warhead was “very stabilizing” and in no way supported the concept of early use of low-yield nuclear weapons (Kreisher 2019), even though the NPR explicitly states the weapon is being acquired to provide “a prompt response option” (Department of Defense 2018).

In the longer term, the NPR declares that the United States will also “pursue a nuclear-armed” submarine-launched cruise missile to “provide a needed nonstrategic regional presence, an assured response capability, and an INF-Treaty compliant response to Russia’s continuing Treaty violation.” The NPR specifically notes that, “If Russia returns to compliance with its arms control obligations, reduces its non-strategic nuclear arsenal, and corrects its other destabilizing behaviors, the United States may reconsider the pursuit of a [submarine-launched cruise missile].” In pursuit of this new missile, the review states “we will immediately begin efforts to restore this capability by initiating a requirements study leading to an Analysis of Alternatives … for the rapid development of a modern [submarine-launched cruise missile].” The report’s authors believe that “US pursuit of a submarine-launched cruise missile may provide the necessary incentive for Russia to negotiate seriously a reduction of its nonstrategic nuclear weapons, just as the prior Western deployment of intermediate-range nuclear forces in Europe led to the 1987 INF Treaty” (Department of Defense 2018, 55).

The new nuclear “supplements” proposed by the NPR are needed, the authors say, to “provide a more diverse set of characteristics greatly enhancing our ability to tailor deterrence and assurance; expand the range of credible US options for responding to nuclear or non-nuclear strategic attack; and, enhance deterrence by signaling to potential adversaries that their concepts of coercive, limited nuclear escalation offer no exploitable advantage” (Department of Defense 2018, 55).

Yet the US arsenal already includes around 1,000 gravity bombs and air-launched cruise missiles with low-yield warhead options (Kristensen 2017a). The NPR provides no evidence that existing capabilities are insufficient or document that the yield of US nuclear weapons is a factor in whether Russia would decide to use nuclear weapons. The NPR authors simply claim that the new capabilities are needed. The US Navy used to have a nuclear submarine-launched cruise missile (the TLAM/N) but retired it in 2011 because it was redundant and no longer needed. All other nonstrategic nuclear weapons—with the exception of gravity bombs for fighter-bombers—have also been retired because there was no longer any military need for them, despite Russia’s larger nonstrategic nuclear weapons arsenal.

The suggestion that a US submarine-launched cruise missile (SLCM) could motivate Russia to return to compliance with the Intermediate-Range Nuclear Forces (INF) Treaty is flawed because Russia embarked upon its current violation of the treaty at a time when the TLAM/N was still in the US arsenal, and because the Trump administration has since withdrawn the United States from the INF Treaty. Moreover, US Strategic Command has already strengthened strategic bombers’ support of NATO in response to Russia’s more provocative and aggressive behavior (see above); 46 B-52 bombers are currently equipped with the air-launched cruise missile (ALCM) and both the B-52 and the new B-21 bomber will receive the new long-range standoff (LRSO) weapon, which will have essentially the same capabilities as the SLCM proposed in the NPR.

Russia’s decisions about the size and composition of its nonstrategic arsenal appear to be driven by the US military’s superiority in conventional forces, not by the US nonstrategic nuclear arsenal or by the yield of a particular weapon. Instead, the pursuit of a new nuclear SLCM to “provide a needed nonstrategic regional presence” in Europe and Asia could increase Russia’s reliance on nonstrategic nuclear weapons and could potentially even trigger Chinese interest in such a capability as well—especially when combined with the parallel expansion of US long-range conventional strike capabilities including development of new conventional INF-range missiles.

One final argument against the SLCM is that nuclear-capable vessels triggered frequent and serious political disputes during the Cold War when they visited foreign ports in countries that did not allow nuclear weapons on their territory. In the case of New Zealand, diplomatic relations have only recently—30 years later—recovered from those disputes. Reconstitution of a nuclear SLCM would reintroduce this foreign relations irritant and needlessly complicate relations with key allied countries in Europe and Northeast Asia

According to an estimate published in January 2019 by the US Congressional Budget Office (CBO), modernizing and operating the US nuclear arsenal and the facilities that support it will cost around $494 billion for the period 2019–2028 (Congressional Budget Office 2019, 1). This is $94 billion more than CBO’s 2017 estimate for the 2017–2026 period, in part because modernization programs continue to ramp up, cost estimates are increasing, and because of the NPR’s call for new nuclear weapons. The nuclear modernization (and maintenance) program will continue well beyond 2028 and, based on the CBO’s estimate, will cost $1.2 trillion over the next three decades. Notably, although the CBO estimate accounts for inflation (Congressional Budget Office 2017), other estimates forecast that the total cost will be closer to $1.7 trillion (Arms Control Association 2017). Whatever the actual price tag will be, it is likely to increase over time, resulting in increased competition with conventional modernization programs planned for the same period. The NPR belittles concerns about affordability issues in the nuclear modernization program and instead labels it “an affordable priority,” pointing out that the total cost is only a small portion of the overall defense budget (Department of Defense 2018, XI). There is little doubt, however, that limited resources, competing nuclear and conventional modernization programs, tax cuts, and the rapidly growing US budget deficit will present significant challenges for the nuclear modernization program.

Nuclear planning, nuclear exercises

The changes in the Trump administration’s Nuclear Posture Review so far do not appear to have required new guidance from the White House on nuclear weapons strategy. The previous guidance, issued in 2013, also reaffirmed the importance of nuclear weapons and modernization and emphasized a strong counterforce strategy—planning principles that have already been incorporated into a host of highly flexible strategic and regional nuclear strike plans (Kristensen 2013a).

This includes a “family” of plans organized under the strategic “Operations Plan (OPLAN) 8010–12,” and also into various regional plans. The OPLAN, which is named “Strategic Deterrence and Force Employment” and first entered into effect in July 2012 in response to Operations Order (OPORD) Global Citadel signed by the secretary of defense, is flexible enough to absorb normal changes to the posture as they emerge, including those flowing from the NPR. Several updates have been published since 2012. OPLAN 8010–12 is part of a broader plan that also includes conventional weapons such as the Tactical Tomahawk submarine-launched cruise missile and the extended-range Joint Air-to-Surface Standoff Missile, as well as missile defense and cyber. OPLAN 8010–12 includes strike options against Russia, China, North Korea, and Iran. Although the Trump administration’s NPR criticizes Russia for an alleged willingness to use nuclear weapons first as part of a so-called escalate-to-deescalate strategy, OPLAN 8010–12 also “emphasizes escalation control designed to end hostilities and resolve the conflict at the lowest practicable level” by developing “readily executable and adaptively planned response options to de-escalate, defend against, or defeat hostile adversary actions” (US Strategic Command 2012). This objective is not just directed at nuclear attacks, as the 2018 NPR calls for “expanding” US nuclear options against “non-nuclear strategic attacks.”

The strategic war plan is a whole-of-government plan that includes the full spectrum of national power to affect potential adversaries. This integration of nuclear and conventional kinetic and non-kinetic strategic capabilities into one overall plan is a significant change from the strategic war plan of the Cold War, which was almost entirely nuclear. Former US Strategic Command (STRATCOM) commander Gen. John Hyten, now the Chairman of the Joint Chiefs of Staff, in 2017 explained the scope of modern strategic planning:

I’ll just say that the plans that we have right now, one of the things that surprised me most when I took command on November 3 was the flexible options that are in all the plans today. So we actually have very flexible options in our plans. So if something bad happens in the world and there’s a response and I’m on the phone with the secretary of defense and the president and the entire staff, which is the attorney general, secretary of state, and everybody, I actually have a series of very flexible options from conventional all the way up to large-scale nuke that I can advise the president on to give him options on what he would want to do.

So I’m very comfortable today with the flexibility of our response options. Whether the president of the United States and his team believes that that gives him enough flexibility is his call. So we’ll look at that in the Nuclear Posture Review. But I’ve said publicly in the past that our plans now are very flexible.

And the reason I was surprised when I got to [Strategic Command] about the flexibility, is because the last time I executed or was involved in the execution of the nuclear plan was about 20 years ago, and there was no flexibility in the plan. It was big, it was huge, it was massively destructive, and that’s all there. We now have conventional responses all the way up to the nuclear responses, and I think that’s a very healthy thing (Hyten 2017).

To practice and fine-tune these plans, the armed forces conducted several nuclear-related exercises in 2020. These included STRATCOM’s Global Lightning exercise in January, a command and control and battle staff exercise designed to assess joint operational readiness across all of STRATCOM’s mission areas. To that end, Global Lightning is typically a globally integrated exercise that links to several other exercises. In 2019, Global Lightning was designed to support US European Command (USEUCOM) and was thus linked to several Europe-focused exercises including USEUCOM’s Exercise Austere Challenge and the United Kingdom’s Exercise Joint Venture (US Strategic Command 2019a). In 2019, at the start of Global Lightning, four B-52s deployed to Royal Air Force Fairford in England (two more joined later) for month-long operations over Europe, which included unprecedented four-bomber strike formations over the eastern Baltic Sea (US Air Forces In Europe 2019a) and north along the Norwegian coast (US Air Forces In Europe 2019b).

In 2020, the exercise was linked to US Cyber Command’s Exercise Cyber Lightning 2020, North American Aerospace Defense Command and US Northern Command’s Exercise Vigilant Shield 2020, US Transportation Command’s Exercise Turbo Challenge, and a US Space Command exercise (US Strategic Command 2020a).

Notably, the 2020 Global Lightning exercise was the first to be conducted entirely from STRATCOM’s new Command and Control Facility, also known as C2F. Dedicated to General Curtis E. LeMay, the new facility includes over 650 miles of telecommunications cables––“enough to link Omaha to Dallas”––and will function as “the heart of the nation’s nuclear command” (US Strategic Command 2019b).

In October 2020, STRATCOM conducted its annual week-long Global Thunder exercise. The exercise, which involved more than 150,000 personnel, focused on “providing realistic training on joint operations and nuclear readiness” (US Strategic Command 2020b). The exercise also included significant non-nuclear or mixed components, such as practice loadings of the conventional Joint Air-to-Surface Standoff Missile and BLU-109 conventional bunker busters in conjunction with B61-7 strategic nuclear gravity bombs (Kristensen 2020c).

Just like the 2019 exercise, Global Thunder coincided with the participation of US strategic bombers in European deterrence exercises. In 2019, the United States conducted several B-52 missions very close to Russian airspace, including a likely simulated bombing strike against Russian forces in Kaliningrad, and another unprecedented three-aircraft B-52 formation flying deep into the Barents Sea––only about 300 kilometers (200 miles) from Russia’s naval base on the Kola Peninsula. In 2020, two B-52s from the 2nd Bomb Wing at Barksdale Air Force Base participated in a two-week NATO Bomber Task Force exercise, following an earlier exercise in August called Allied Sky, wherein six B-52s flew over all 30 NATO countries in a single day (US European Command 2020; NATO 2020a). In June, B-52s from Minot Air Force Base also conducted flights over the Arctic Ocean and participated in the Baltic Sea operation BALTOPS (US Air Forces in Europe 2020; US Strategic Command 2020c).

The US Air Force has increased bomber operations as part of a Great Power Competition strategy, with frequent flights over all areas around Russia. This image shows US B-52 bomber and Norwegian F-16 fighters over Northern Norway in November 2019 before the bombers continued into the Barents Sea near Russia’s strategic submarine base on the Kola Peninsula. (Image: US Air Force).

These operations mark a peak in steadily increasing US bomber operations in Europe since Russia’s invasion of Ukraine in 2014. Before that, one or two bombers would deploy for an exercise or airshow. But since then, the number of deployments and bombers has increased, and the mission changed. Very quickly after the Russian annexation of Crimea, STRATCOM increased the role of nuclear bombers in support of EUCOM (Breedlove 2015), which in 2016 put into effect a new standing war plan for the first time since the Cold War (Scapparotti 2017). Before 2018, the bomber mission was called the Bomber Assurance and Deterrence missions to show the flag, but now the bombers deploy as a Bomber Task Force that brings the full offensive capability to the forward base. Whereas the mission of Bomber Assurance and Deterrence was to train with allies and have a visible presence to deter Russia, the mission of the Bomber Task Force is to move a fully combat ready bomber force into the European theater. “It’s no longer just to go partner with our NATO allies, or to go over and have a visible presence of American air power,” according to the commander of the 2nd Bomb Wing. “That’s part of it, but we are also there to drop weapons if called to do so” (Wrightsman 2019).

RELATED: Nuclear notebook: Chinese nuclear forces, 2020

These changes are important indications of how US strategy has changed in response to deteriorating East-West relations and the new “Great Power competition” strategy promoted by the Trump administration. They also illustrate a growing integration of nuclear and conventional capabilities that is frequently overlooked. The deployment of four B-52s to Royal Air Force Fairford in March 2019, for example, included two nuclear-capable aircraft and two that have been converted to conventional-only missions. NATO’s official announcement of the exercise did not notice this feature but said the deployment “shows that the US nuclear umbrella protects Europe.” (NATO 2019). The statement also said that the B-52 bombers “can carry both conventional and nuclear weapons” when, in fact, nearly half of them—41 of 87—cannot because they have been denuclearized under the New START treaty. The close integration of nuclear and conventional bombers into the same task force can have significant implications for crisis stability, misunderstandings, and the risk of nuclear escalation.

Land-based ballistic missiles

The US Air Force operates a force of 400 silo-based Minuteman III ICBMs split across three wings: the 90th Missile Wing at F. E. Warren Air Force Base in Colorado, Nebraska, and Wyoming; the 91st Missile Wing at Minot Air Force Base in North Dakota; and the 341st Missile Wing at Malmstrom Air Force Base in Montana. In addition to the 400 silos with missiles, another 50 silos are kept “warm” to load stored missiles if necessary. Each wing has three squadrons, each with 50 Minuteman III silos. They are collectively controlled by five launch control centers.

The 400 ICBMs as deployed carry one warhead each, either a 300-kiloton W87/Mk21 or a 335-kiloton W78/Mk12A. ICBMs equipped with the W78/Mk12A, however, could theoretically be uploaded to carry two or three independently targetable warheads each, for a total of 800 warheads available for the ICBM force. The ICBMs completed a multibillion-dollar, decade-long modernization program in 2015 to extend the service life of the Minuteman III to 2030. Although the United States did not officially deploy a new ICBM, the upgraded Minuteman IIIs “are basically new missiles except for the shell,” according to Air Force personnel (Pampe 2012).

An ongoing Air Force modernization program involves upgrades to the arming, fuzing, and firing component of the Mk21 reentry vehicle, at a cost of slightly over a billion dollars in total. The publicly stated purpose of this refurbishment is to extend the vehicles’ service life, but the effort appears to also involve adding a “burst height compensation” to enhance the targeting effectiveness of the warheads (Postol 2014). Priority is on replacement of the Mk21 fuze. A total of 693 fuze replacements were initially planned; however, the new fuzes will also reportedly be deployed on the Minuteman replacement missile, which means that the fuze modernization program is likely to expand significantly to accommodate those new missiles (Woolf 2020, 15-16). The effort complements a similar fuze upgrade underway to the Navy’s W76-1/Mk4A warhead. The enhanced targeting capability might also allow for lowering the yield on future warhead designs.

It is possible to do a second life-extension of the Minuteman III. In March 2019, the Air Force’s Deputy Chief of Staff for Strategic Deterrence and Nuclear Integration noted in his testimony to the House Subcommittee on Strategic Forces that there was one more opportunity to life-extend the missiles before the Minuteman III would have to be replaced (Clark 2019). However, the Air Force has decided against life-extension, instead opting to purchase a whole new generation of ICBMs.

In August 2017, the Air Force awarded $678 million worth of contracts to Boeing and Northrop Grumman to develop trade studies for the next-generation ICBM that is currently known as the Ground-Based Strategic Deterrent (GBSD) (Erwin 2018). In October 2019, the Program Manager for GBSD noted that the official name for the missile would be selected within 12 months; however, over a year later an official name has still not yet been announced (Bartolomei 2019). On July 16, 2019, the Air Force issued a formal “request for proposals” for the Engineering and Manufacturing Development (EMD) phase of the GBSD program, which includes five production lot options to produce and deploy the system (Bryant 2019).

As the two companies under contract for the GBSD’s Technology Maturation and Risk Reduction phase, Boeing and Northrop Grumman were both expected to bid for the EMD contract. However, only a week after the request for proposals was issued, Boeing surprisingly walked away from the competition, stating that “the current acquisition approach does not provide a level playing field for fair competition” (Weisgerber 2019). The dispute centers on Northrop Grumman’s 2018 acquisition of Orbital ATK, which is one of only two US-based companies that produces solid rocket motors and launch vehicles. Under the terms of the acquisition, Northrop Grumman is required to provide “for solid rocket motors to be available on a non-discriminatory basis under certain conditions and processes.” However, Boeing has expressed concern that Northrop Grumman would not comply with that order, thus putting Northrup Grumman at a favorable position in the bidding process over Boeing, which does not produce those systems in-house. Despite Boeing’s stated intention to not submit a bid for the EMD contract, Boeing conducted a substantial lobbying campaign throughout the summer of 2019, in an effort to convince Congress and the Air Force to force Northrop Grumman into submitting a joint “best-of-industry” bid with Boeing (Mehta 2019). However, Northrop Grumman declined Boeing’s offer and the Air Force did not intervene to force a joint bid. The Air Force subsequently terminated the remainder of Boeing’s Technological Maturation and Risk Reduction contract in October 2019 by refusing to allocate any further funding to the contract, thus effectively ending Boeing’s involvement with the GBSD program (Insinna 2019).

By December 13, 2019––the Request for Proposal deadline for the EMD contract––the Air Force received only a single bid for the contract, and on September 8, 2020, the Air Force officially awarded the $13.3 billion EMD contract to Northrop Grumman. The nationwide team will include Aerojet Rocketdyne––which will produce the system’s solid-fuel rocket motors in conjunction with newly-acquired Orbital ATK, which is now called Northrop Grumman Innovation Systems––General Dynamics, Collins Aerospace, Lockheed Martin, Textron Systems, HDT Global, Bechtel, Kratos Defense and Security Solutions, Clark Construction, L3Harris, and Honeywell (Northrop Grumman 2020).

According to the Air Force’s latest milestone requirements, the Air Force must deploy 20 new GBSD missiles with legacy reentry vehicles and warheads in order to achieve Initial Operating Capability, which is scheduled in Fiscal Year 2029 (Sirota 2020). The plan is to buy 659 missiles—400 of which would be deployed, while the remainder will be used for test launches and as spares—at a price between $93.1 billion and $95.8 billion, increased from a preliminary $85 billion Pentagon estimate in 2016 (Capaccio 2020). These amounts do not include the costs for the new GBSD warhead––the W87-1––which is projected to cost up to $14.8 billion (Government Accountability Office 2020). The Air Force says the GBSD will meet existing user requirements but have the adaptability and flexibility to be upgraded through 2075 (US Air Force 2016). The new missile is expected to have a greater range than the Minuteman III, although it is unlikely that it will have enough range to target countries like China, North Korea, and Iran without overflying Russia.

The GBSD will be capable of carrying single or multiple warheads. The Air Force initially planned to equip the GBSD with life-extended versions of the existing W78 and W87 warheads. The modified W78 was known as Interoperable Warhead 1 (IW-1). But in 2018, the Air Force and National Nuclear Security Administration canceled the W78 upgrade and instead proposed a W78 Replacement Program using a W87-1 warhead. The new warhead will use a W87-like plutonium pit, “using a well-tested IHE [Insensitive High Explosive] primary design” (Energy Department 2018b). The new warhead will be incorporated into a modified version of the Mk21 reentry vehicle and be designated as the W87-1/Mk4A. In order to produce the W87-1 in time to meet the GBSD’s planned deployment schedule, the National Nuclear Security Administration has set itself an extremely ambitious production schedule that relies upon its ability to produce up to 80 plutonium pits per year by 2030. However, due to the agency’s consistent inability to meet project deadlines and its lack of a latent large-scale plutonium production capability, it is extremely unlikely that this 80-pit requirement will be met in time, meaning that W87-1 production and deployment will almost certainly be delayed (Government Accountability Office 2020; Institute for Defense Analyses 2019).

In October 2019, Lockheed Martin was awarded at $138 million contract to integrate the Mk21 reentry vehicle into the GBSD, beating out rivals Boeing, Raytheon, Northrop Grumman, and Orbital ATK (which Northrop Grumman now owns and has been renamed to Northrop Grumman Innovation Systems) (Lockheed Martin 2019). Because the W87-1/Mk21A will be bulkier than the current W78/Mk12A, the GBSD payload section would have to be wider to accommodate multiple warheads, and Northrup Grumman’s GBSD illustration shows a missile that is different than the existing Minuteman III, with a wider upper body and payload section (Kristensen 2019b)

The Air Force faces a tight construction schedule for the deployment of the GBSD. Each Launch Facility is expected to take seven months to upgrade, while each Missile Alert Facility will take approximately 12 months. The Air Force intends to upgrade all 150 Launch Facilities and eight of 15 Missile Alert Facilities for each of the three ICBM bases; the remaining seven Missile Alert Facilities at each base will be dismantled (US Air Force 2020a). Since each Missile Alert Facility is currently responsible for a group of 10 Launch Facilities, this reduction could indicate that each Missile Alert Facility could be responsible for up to 18 or 19 Launch Facilities once the GBSD becomes operational––which could have implications for the future vulnerability of the GBSD’s command and control system (Korda 2020). Once these upgrades begin, potentially as early as 2023, the Air Force must finish converting one Launch Facility per week for nine years in order to complete deployment by 2036 (Mehta 2020). It is expected that construction and deployment will begin at F. E. Warren between 2023 and 2031, followed by Malmstrom between 2025 and 2033, and finally Minot between 2027 and 2036.

As the GBSD gets deployed, the Minuteman IIIs will be removed from their silos and temporarily stored at their respective host bases––either F. E. Warren, Malmstrom, or Minot––before being transported to Hill Air Force Base, the Utah Test and Training Range, or Camp Navajo. The rocket motors will eventually be destroyed at the Utah Test and Training Range, while non-motor components will ultimately be decommissioned at Hill Air Force Base. To that end, five new storage igloos and 11 new storage igloos will be constructed at Hill Air Force Base and Utah Test and Training Range, respectively (US Air Force 2020a). New training, storage, and maintenance facilities will also be constructed at the three ICBM bases, which will also receive upgrades to their Weapons Storage Areas. The first base to receive this upgrade is F. E. Warren, where a groundbreaking ceremony for the new Weapons Storage and Maintenance Facility (also called the Weapons Generation Facility) was held in May 2019. Substantial construction began in spring 2020 and is expected to be completed in 2022 (Kristensen 2020b; US Air Force 2019d).

Just like in 2019, the Air Force conducted four Minuteman III flight-tests in 2020. The first test took place on February 5th, when a team of airmen derived from all three ICBM bases launched a Minuteman III from Vandenberg Air Force Base to the Reagan Test Site on Kwajalein Atoll in the Western Pacific. Unlike most routine Minuteman test launches––which seek to verify fleet-wide reliability by picking a missile at random from one of the ICBM bases—this Developmental Test Launch used a spare missile from storage to assess the flight worthiness of new or replacement parts. This was the second of four scheduled launches of this kind, with the first having been conducted in February 2019 (US Strategic Command 2020d). This was also the first Minuteman test launch from Vandenberg since that base became part of the new US Space Force.

The second test took place on August 4th, when a joint team of Air Force Global Strike Command airmen and Navy sailors launched a Minuteman III remotely using the Airborne Launch Control System aboard a Navy E6-B Mercury, from Vandenberg Air Force Base to the Reagan Test Site on Kwajalein Atoll in the Western Pacific. Notably, the test missile was equipped with three reentry vehicles, despite the fact that each deployed Minuteman III is only equipped with a single reentry vehicle (US Strategic Command 2020e). The test came only five days after the Trump administration’s arms control envoy tweeted a photo of himself observing a snap exercise at Minot Air Force Base involving a Minuteman equipped with three reentry vehicles (Billingslea 2020).

The third test took place on September 2nd, when a missile selected from Minot Air Force Base was launched from Vandenberg to the Reagan Test Site (Scully 2020).

The fourth and final test took place on October 29, when a missile selected from Minot Air Force Base was launched from Vandenberg to the Reagan Test Site (US Air Force 2020c). The test launch took place only one day after the conclusion of STRATCOM’s Global Thunder nuclear command and control exercise.

Nuclear-powered ballistic missile submarines

The US Navy operates a fleet of 14 Ohio-class ballistic missile submarines, of which eight operate in the Pacific from their base near Bangor, Washington, and six operate in the Atlantic from their base at Kings Bay, Georgia. Normally, 12 of the 14 submarines are considered operational, with the remaining two boats in a refueling overhaul at any given time. But because operational submarines undergo minor repairs at times, the actual number at sea at any given time is closer to eight or 10. Four or five of those are thought to be on “hard alert” in their designated patrol areas, while another four or five boats could be brought to alert status in hours or days.

Each submarine can carry up to 20 Trident II D5 submarine-launched ballistic missiles (SLBMs), a number reduced from 24 to meet the limits of the New START treaty. Since 2017, the Navy has been replacing the original Trident II D5 with a life-extended and upgraded version known as Trident II D5LE (LE stands for “life-extended”). The D5LE, which has a range of more than 12,000 km (7,456 miles), is equipped with the new Mk6 guidance system designed to “provide flexibility to support new missions” and make the missile “more accurate,” according to the Navy and Draper Laboratory (Naval Surface Warfare Center 2008; Draper Laboratory 2006). The D5LE upgrade will continue until all boats have been upgraded and will also replace existing Trident SLBMs on British ballistic missile submarines. The D5LE will also arm the new US Columbia-class and British Dreadnought-class ballistic missile submarines when they enter service. Instead of building a new ballistic missile, the Navy plans to do a second life-extension of the Trident II D5 to ensure it can operate through 2084 (Eckstein 2019).

Each Trident SLBM can carry up to eight nuclear warheads, but normally carry an average of four or five warheads, for an average load-out of approximately 90 warheads per submarine. The payload of the different missiles on a submarine are thought to vary significantly to provide maximum targeting flexibility, but all deployed submarines are thought carry the same combination. Normally, 900 to 950 warheads are deployed on the operational ballistic missile submarines, although the number can be lower due to maintenance of individual submarines. The New START data from October 2020, however, indicated there were 1,009 warheads deployed on 220 SLBM launchers, marking the first time since 2015 that the United States deployed more than 1,000 warheads on its submarines (State Department 2020a). As a result, we have increased the total number of deployed warheads in Table 1. Overall, SSBN-based warheads account for nearly 70 percent of all warheads attributed to the United States’ deployed strategic launchers under New START.

Three warhead types are deployed on SLBMs: the 90-kiloton enhanced W76-1, the 8-kiloton W76-2, and the 455-kiloton W88. The W76-1 is a refurbished version of the W76-0, which is being retired, apparently with slightly lower yield but with enhanced safety features added. The National Nuclear Security Administration announced in January 2019 that it has completed production of the W76-1 (Energy Department 2019a), a massive decade-long production of an estimated 1,600 warheads. The Mk4A reentry body that carries the W76-1 is equipped with a new arming, fuzing, and firing unit with better targeting efficiency than the old Mk4/W76 system (Kristensen, McKinzie, and Postol 2017).

The other SLBM warhead, the higher-yield W88, is currently undergoing a life-extension program that in May 2020 produced the first assembly of the W88 Alt 370 First Production Capability at the Pantex Plant––a process that addresses nuclear safety concerns and will ultimately support future life-extension options (NNSA 2020a).

In the final weeks of 2019, the Navy deployed a low-yield version of the W76-1 known as W76-2 on the USS Tennessee (SSBN-734). The W76-2 only uses the warhead fission primary to produce a yield of about 8 kilotons. The First Production Unit of the W76-2 was completed at the Pantex Plant on February 22, 2019 and reached Initial Operational Capability some time before the end of the fiscal year on September 30, 2019 (NNSA 2019). It is unknown exactly how many W76-2 warheads were produced; however, the NPR says it’s a “small number” (Department of Defense 2018, 54). We estimate that no more than 25 were ultimately produced, and that one or two of the 20 missiles on each SSBN will be armed with a single W76-2 warhead, while the remainder of the warhead slots will be filled with either the 90-kiloton W76-1 or the 455-kiloton W88 (Arkin and Kristensen 2020).

The United States is also planning to build a new SLBM warhead––the W93––which will be housed in the Navy’s proposed Mk7 aeroshell (reentry body). The House Appropriations Committee refused to fund the W93 program in the 2021 defense budget, and it remains unclear whether it will be included in the final budget or whether it would be championed by a potential future administration. If funded, the W93 would probably replace the W76-1 at some point in the 2040s.

The US sea-based nuclear weapons program also provides substantial support to the British nuclear deterrent. The missiles carried on the Royal Navy ballistic missile submarines are from the same pool of missiles carried on US ballistic missile submarines. The warhead uses the Mk4A reentry body and is thought be a slightly modified version of the W76-1 (Kristensen 2011b); the British government calls the Trident Holbrook (UK Ministry of Defence 2015). The Royal Navy also plans to use the new Mk7 for the replacement warhead it plans to deploy on its new Dreadnought submarines in the future. Despite a significant lobbying effort on the part of the United Kingdom––including an unprecedented letter to US Congress from the UK Minister of Defence asking it to support the W93 warhead––the program’s status is currently unsettled (Borger 2020).

Since the first deterrent patrol in 1960, US ballistic missile submarines have conducted approximately 4,180 deterrent patrols at sea. During the past 15 years, operations have changed significantly, with the annual number of deterrent patrols having declined by more than half, from 64 patrols in 1999 to 30 to 36 annual patrols in recent years. Most submarines now conduct what are called “modified alerts,” which mix deterrent patrol with exercises and occasional port visits (Kristensen 2013b). While most ballistic missile submarine patrols last around 77 days, they can be shorter—or, occasionally, can last significantly longer. In June 2014, for example, the Pennsylvania (SSBN-735) returned to its Kitsap Naval Submarine Base in Washington after a 140-day deterrent patrol, the longest patrol ever by an Ohio-class ballistic missile submarine. In contrast to the Cold War years, when the overwhelming majority of deterrent patrols took place in the Atlantic Ocean, today more than 60 percent of deterrent patrols normally take place in the Pacific, reflecting increased nuclear war planning against China and North Korea (Kristensen 2018).

RELATED: Biden is off to a great start. But there’s a lot of work to be done on climate.

Ballistic missile submarines normally do not visit foreign ports during patrols, but there are exceptions. Over a four-year period in the late 1970s and early 1980s, US submarines routinely conducted port visits to South Korea (Kristensen 2011a). Occasional visits to Europe, the Caribbean, and Pacific ports continued during the 1980s and 1990s. After Russia’s invasion of Ukraine in 2014, the Navy has started to conduct one or two foreign port visits per year. A visit to Scotland in 2015 appeared to be a warning to Russia and was described as a US Navy plan to make ballistic missile submarines more visible (Melia 2015). A highly publicized visit to Guam in 2016—the first visit to the island by a ballistic missile submarine since 1988—was a clear warning to North Korea. Visits continued in 2017, 2018, and 2019 to Scotland, Alaska, and Guam.

Design of the next generation of ballistic missile submarines, known as the Columbia-class, is well under way. This new class is scheduled to begin replacing the current Ohio-class ballistic missile submarines in the late 2020s. The Columbia class will be 2,000 tons heavier than the Ohio-class and will be equipped with 16 missile tubes rather than 20. The Columbia program, which is expected to account for approximately one-fifth of the Navy’s entire shipbuilding program during the mid-2020s to mid-2030s, is projected to cost $109.8 billion (Congressional Research Service 2020, 8). The lead boat in a new class is generally budgeted at a significantly higher amount than the rest of the boats, as it is longstanding Navy practice to incorporate the entire fleet’s design detail and non-recurring engineering costs into the cost of the lead boat. As a result, the Navy’s fiscal 2021 budget submission estimates the procurement cost of the first Columbia-class SSBN – the USS Columbia (SSBN-826) – at approximately $14.4 billion, followed by $9.3 billion for the second boat (Congressional Research Service 2020, 9). A $5.1 billion development contract was awarded to General Dynamics Electric Boat in September 2017, and construction of the first boat began on October 1, 2020––the first day of fiscal 2021. It is possible, however, that certain elements of construction will be delayed due to the ongoing COVID-19 pandemic, as the Columbia Program Officer noted in June 2020 that missile tube production had already been delayed by “about a couple of months” due to the pandemic (Eckstein 2020). General Dynamics expects to receive $75 billion in revenue over the life span of the Columbia-class project (Medici 2017).

After years of development, construction of the first of 12 Columbia-class SSBNs will begin in 2021, with first deterrent patrol scheduled for 2031. (Image: US Navy).

The Columbia-class submarines are expected to be significantly quieter than the current Ohio-class fleet, due to the introduction of an electric-drive propulsion train that will turn each boat’s propellor with an electric motor––instead of louder mechanical gears. Additionally, the components of an electric-drive propulsion train can be distributed around the boat, increasing the system’s resilience and lowering the chances that a single weapon could disable the entire drive system (Congressional Research Service 2000, 20). The Navy has never built a nuclear-powered submarine with electric-drive propulsion before, which could ultimately create technical delays for a program that is already on a very tight production schedule (Congressional Research Service 2020, 19).

In October 2019, the Columbia program manager noted in a presentation that final ship arrangements for the new class of submarines had been completed on September 6, apparently a year ahead of schedule (Bartolomei 2019). The Navy’s revised schedule now indicates that the Ohio-class boats will begin going offline in fiscal 2027, around the same time that the first Columbia-class boat is scheduled to be delivered in October 2027. Sea trials are expected to last approximately three years, and the first Columbia deterrence patrol is scheduled for 2031 (Congressional Research Service 2020, 8). The Columbia deliveries will coincide with the Ohio-class boats being taken out of service, and the Navy projects that they will go from 14 boats to 13 in 2027, 12 in 2029, 11 in 2030, and 10 in 2037, before eventually climbing back to 11 in 2041 and the full complement of 12 boats in 2042 (US Navy 2019; Rucker 2019). The lead boat of the new Columbia-class submarine fleet will be designated the USS Columbia (SSBN-826), and the second boat will be designated the USS Wisconsin (SSBN-827). The rest of the Columbia-class submarine fleet has not yet been named (US Navy 2020a).

Compared with the previous year’s five test launches, only two Trident II D5LEs were test-launched in 2020. The tests took place on February 12 and 16 from the USS Maine (SSBN-741). The first launch was part of a Demonstration and Shakedown Operation (DASO-30) designed to test both the system and the crew’s readiness for operational deployment, and the second was intended to gather additional data on the weapon system’s reliability and accuracy. These launches marked the 177th and 178th successful test launches of the Trident II system since its introduction into the US arsenal in 1989 (US Navy 2020b; US Navy 2020c).

Demonstration and Shakedown Operations are conducted after an ballistic missile submarine completes its Engineering Refueling Overhaul (ERO)––a multi-year operation that takes place around the 20-year point for each boat. The overhaul consists of extensive structural repairs and the refueling of the boat’s nuclear reactor, and results in a 20-year life extension for each boomer. The Navy first completed the USS Ohio’s (SSBN-726) ERO in December 2005, and has since completed 16 additional overhauls, completing the USS Wyoming’s (SSBN-742) ERO in October 2020 (Department of Defense Inspector General 2018; Naval Sea Systems Command 2020). It is expected that the USS Wyoming will undergo a Demonstration and Shakedown Operation (DASO-31) next year. The final ballistic missile submarine to undergo an ERO is the USS Louisiana (SSBN-743), which began the overhaul process in August 2019 and is expected to be completed in late 2021 or early 2022 (Farley 2019). The Columbia-class SSBNs will not require nuclear refueling; as a result, their midlife maintenance operations will take significantly less time than their Ohio-class counterparts (Congressional Research Service 2020, 5).

Strategic bombers

The US Air Force currently operates a fleet of 20 B-2A bombers (all of which are nuclear-capable) and 87 B-52H bombers (46 of which are nuclear-capable). A third strategic bomber, the B-1, is not nuclear-capable. Of these bombers, we estimate that approximately 60 (18 B-2As and 42 B-52Hs) are assigned nuclear missions under US nuclear war plans, although the number of operational bombers is lower. The New START data from March 2019 counted 50 deployed nuclear bombers (12 B-2As and 38 B-52Hs) (State Department 2020a). The bombers are organized into nine bomb squadrons in five bomb wings at three bases: Minot Air Force Base in North Dakota, Barksdale Air Force Base in Louisiana, and Whiteman Air Force Base in Missouri. The new B-21 bomber program will result in an increase in the number of nuclear bomber bases.

Each B-2 can carry up to 16 nuclear bombs (the B61-7, B61-11, and B83-1 gravity bombs), and each B-52H can carry up to 20 air-launched cruise missiles (the AGM-86B). B-52H bombers are no longer assigned gravity bombs (Kristensen 2017b). An estimated 850 nuclear weapons, including 528 air-launched cruise missiles, are assigned to the bombers, but only about 300 weapons are thought to be deployed at bomber bases. The remaining 550 bomber weapons are thought to be in central storage at the large Kirtland Underground Munitions Maintenance and Storage Complex outside Albuquerque, New Mexico.

The United States is modernizing its nuclear bomber force by upgrading nuclear command and control capabilities on existing bombers; developing improved nuclear weapons (the B61-12 and the long-range standoff missile); and designing a new heavy bomber, the B-21 Raider.

Upgrades to the nuclear command and control systems that the bombers use to plan and conduct nuclear strikes include the Global Aircrew Strategic Network Terminal (Global ASNT)—a new high-altitude electromagnetic pulse–hardened network of fixed and mobile nuclear command and control terminals that provides wing command posts, task forces, munitions support squadrons, and mobile support teams with survivable ground-based communications to receive launch orders and disseminate them to bomber, tanker, and reconnaissance air crews. First delivery of the Global Aircrew Strategic Network Terminals was expected in May 2020, although it is unclear if this has since been completed (US Air Force 2018).

Another command-and-control upgrade involves a program known as Family of Advanced Beyond Line-of-Sight Terminals (FAB-T), which replaces existing terminals designed to communicate with the MILSTAR satellite constellation. These new, extremely high frequency terminals are designed to communicate with several satellite constellations, including Advanced Extremely High Frequency satellites. FAB-T will provide protected high–data rate communication for nuclear and conventional forces, to include what is officially called Presidential National Voice Conferencing. According to the Air Force (US Air Force 2019b), “FAB-T will provide this new, highly secure, state-of-the-art capability for [Department of Defense] platforms to include strategic platforms and airborne/ground command posts via MILSTAR, [Advanced Extremely High Frequency], and Enhanced Polar System (EPS) satellites. FAB-T terminals will also support the critical command and control … of the MILSTAR, [Advanced Extremely High Frequency], and EPS satellite constellations.”

The heavy bombers are also being upgraded with improved nuclear weapons. This effort includes development of the first guided, standoff nuclear gravity bomb, known as the B61-12, which is intended to replace all existing gravity bombs. The bomb will use a modified version of the warhead used in the current B61-4 gravity bomb. B61-12 integration drop tests have already been conducted from the B-2 bomber (and several tactical fighter jets). Approximately 480 B61-12 bombs, which appear to have earth-penetration capability (Kristensen and McKinzie 2016), are expected to cost a total of roughly $10 billion. The first production unit was initially scheduled for March 2020; however, in September 2019 a National Nuclear Security Administration official confirmed that both the B61-12 and the upgraded W88 warhead for the Trident II SLBM will likely face delays during production due to concerns over the longevity of its commercial off-the-shelf subcomponents (Gould and Mehta 2019). The First Production Unit (FPU) prototype of the B61-12 was completed on August 25, 2020 at the Pantex Plant (NNSA 2020b). The first real FPU is expected to roll off the production line in late 2021.

The Air Force is also developing a new nuclear air-launched cruise missile known as the long-range standoff (LRSO) missile. It will replace the AGM-86B air-launched cruise missile in 2030 and carry the W80-4 warhead, a modified version of the W80-1 used in the current air-launched cruise missile. In February 2019, the Nuclear Weapons Council authorized the Development Engineering phase (Phase 6.3) for the W80-4. The Production Engineering stage (Phase 6.4) is planned for December 2021 (Energy Department 2019b). A solicitation invitation to defense contractors in 2015 listed three potential options for the LRSO engine: First, a derivative subsonic engine that improves on current engine technology by up to 5 percent; second, an advanced subsonic engine that improves on current technology by 15 percent to 20 percent; and third, a supersonic engine (US Air Force 2015). In August 2017, the Air Force awarded 5-year contracts of $900 million each to Lockheed Martin and Raytheon to develop design options for the missile. After reviewing the designs, the Air Force in December 2019 cleared the two companies to continue development of the missile (Sirota 2019). The Air Force originally planned to down-select to a single contractor in fiscal 2022 during the awarding of the Engineering and Manufacturing Development contract; however, in April 2020, the Air Force selected Raytheon as the prime contractor for the LRSO (US Air Force 2020b). This was a relatively surprising move, as selecting a single-source contractor at this early stage could ultimately result in higher program costs.

In March 2019, the Air Force awarded Boeing a $250 million contract to integrate the future LRSO capability onto the B-52Hs, a process that is expected to be completed by the beginning of 2025 (Hughes 2019). Development and production are projected to reach at least $4.6 billion for the missile (US Air Force 2019a) with another $10 billion for the warhead (Energy Department 2018a).

The missile itself is expected to be entirely new, with significantly improved military capabilities compared with the air-launched cruise missile, including longer range, greater accuracy, and enhanced stealth (Young 2016). This violates the White House pledge from 2010 (White House 2010) that the “United States will not … pursue … new capabilities for nuclear weapons,”  though the NPR from 2018 did away with such constraints.

Supporters of the LRSO argue that a nuclear cruise missile is needed to enable bombers to strike targets from well outside the range of the modern and future air-defense systems of potential adversaries, and to provide US leaders with flexible strike options in limited regional scenarios. However, critics argue that conventional cruise missiles, such as the extended-range version of the Joint Air-to-Surface Standoff Missile, can currently provide standoff strike capability, and that other nuclear weapons would be sufficient to hold the targets at risk. In fact, the conventional extended-range Joint Air-to-Surface Standoff Missile (JASSM-ER) is now an integral part of STRATCOM’s annual strategic exercises.

Unlike the current air-launched cruise missile, which is only carried by the B-52H bomber, the long-range standoff missile will be integrated on both the B-52H and new B-21 bombers (Kristensen 2013c). Warhead production is scheduled from 2025 through 2031. The Air Force plans to buy 1,000 missiles (Reif 2015), but there will only be enough warheads for about half of those. The excess missiles are intended to be used as spares and for test flights over the course of the weapon’s 30-year service life. Moreover, several hundred of the existing air-launched cruise missiles were converted to conventional missiles (AGM-86C/D) and the US Air Force Global Strike Command has previously indicated that it intends to develop a conventional version of the LRSO (Wilson 2015).

But given the deployment of several new long-range conventional cruise missiles and the development of even more advanced versions, it remains to be seen if the Air Force can persuade Congress to also pay for a conventional version of the LRSO. Indeed, the Air Force has replaced the AGM-86C/D conventional air-launched cruise missile with the extended-range conventional Joint Air-to-Surface Standoff Missile. If Congress will not pay for conventional LRSOs, it can probably be assumed that the plan to buy 1,000 missiles can be reduced by several hundred.

Development of the new B-21 Raider next-generation heavy bomber continues at Northrop Grumman, with the preliminary design review receiving approval in early 2017 and the first test vehicle currently in production. The B-21 is scheduled to make its first flight no earlier than 2022 from its production facility in Palmdale, California, to Edwards Air Force Base (Wolfe 2020). The B-21 is expected to enter service in the mid-2020s to gradually replace the B-1B and B-2 bombers during the 2030s, and it is expected that the Air Force will procure at least 145 of the new bombers at an estimated cost of $550 million per plane to increase the total bomber force from 175 to 220 aircraft (Tirpak 2020).

The B-21 bomber program will expand the number of US nuclear bomber bases. (Image: US Air Force).

The Air Force announced in March 2019 that the B-21 bombers will first be deployed at Ellsworth Air Force Base (South Dakota), followed by Whiteman Air Force Base (Missouri) and Dyess Air Force Base (Texas) “as they become available” (US Air Force 2019c). The upgrade of the non-nuclear B-1 bases to the nuclear B-21 bomber will increase the number of bomber bases with nuclear weapons storage facilities from two bases today (Minot AFB and Whiteman AFB) to five bases by the 2030s (Barksdale AFB will also regain nuclear storage capability) (Kristensen 2020d). Further details about the B-21 program, including updated cost estimates, are still shrouded in secrecy; however, like all previous bomber programs, the costs will most likely increase.

The B-21 is very similar in design to the B-2 but is expected to be slightly smaller and have a reduced weapons capability. The B-21 will be capable of delivering both the B61-12 guided nuclear gravity bomb and the LRSO, as well as a wide range of non-nuclear weapons, including the Joint Air-to-Surface Standoff cruise missile.

Nonstrategic nuclear weapons

 The United States has one type of nonstrategic nuclear weapon in its stockpile, the B61 gravity bomb. The weapon exists in two modifications: the B61-3 and the B61-4. A third version, the B61-10, was retired in September 2016. Approximately 230 tactical B61 bombs of all versions remain in the stockpile. About 100 of these (versions -3 and -4) are thought to be deployed at six bases in five European countries: Aviano and Ghedi in Italy; Büchel in Germany; Incirlik in Turkey; Kleine Brogel in Belgium; and Volkel in the Netherlands. This number has declined since 2009 partly due to reduction of operational storage capacity at Aviano and Incirlik (Kristensen 2015, 2019c). The remaining 130 B61s stored in the United States are for backup and potential use by US fighter-bombers in support of allies outside Europe, including northeast Asia.

The Belgian, Dutch, German, and Italian air forces are assigned nuclear strike missions with US nuclear weapons. Under normal circumstances, the nuclear weapons are kept under the control of US Air Force personnel; their use in war must be authorized by the US president. The Belgian and Dutch air forces currently use the F-16 aircraft for the nuclear missions, although both countries are in the process of obtaining the F-35A to eventually replace their F-16s. The Italian Air Force uses the PA-200 Tornado for the nuclear mission but is in the process of acquiring the F-35A. Like the Tornados, the nuclear F-35As will be based at Ghedi Air Base, which is currently being upgraded. Germany officially rejected the F-35A in early 2019 and is instead planning on purchasing Eurofighter Typhoons as well as F-18 Super Hornets, which reportedly have easier nuclear certification processes (NTV 2020). However, a formal decision on Germany’s aircraft procurement will not be made until at least 2022 (Zeitvogel 2020).

At least until 2010, Turkey was still using F-16s for the nuclear mission, although it is possible that the mission has since been mothballed. In 2019, the Trump administration also halted delivery of F-35As to Turkey––some of which were intended to be used in the nuclear mission––because of its plans to acquire the Russian S-400 air-defense system (DeYoung, Fahim, and Demirjian 2019). Concerns were raised about the security of the nuclear weapons at the Incirlik base during the failed coup attempt in Turkey in July 2016, and the chairman of the Senate Foreign Relations Subcommittee for Europe stated in September 2020 that “our presence, quite honestly, in Turkey is certainly threatened,” and further noted that “we don’t know what’s going to happen to Incirlik” (Gehrke 2020). Despite rumors in late 2017 that the weapons had been “quietly removed” (Hammond 2017), reports in 2019 that US officials had reviewed emergency nuclear weapons evacuation plans (Sanger 2019) indicated that that there were still weapons present at the base. The numbers appear to have been reduced, however, from up to 50 to approximately 20. If the United States decided to withdraw the remaining nuclear weapons from Incirlik, it could probably do so with a single C-17 transport aircraft from the 4th Airlift Squadron at Joint Base Lewis-McChord in Washington—the only unit in the Air Force that is qualified to airlift nuclear weapons.

NATO states that do not host nuclear weapons can still participate in the nuclear mission as part of conventional supporting operations, known as SNOWCAT (Support Nuclear Operations With Conventional Air Tactics).

NATO is working on a broad modernization of the nuclear posture in Europe that involves upgrading bombs, aircraft, and the weapons storage system. The B61-12 is estimated to be 12 feet long, weighing approximately 825 pounds, and is designed to be air-launched in either ballistic or gravity drop modes (Baker 2020). The B61-12 will be deployed to Europe beginning in 2022–2024, at which point the older B61-3 and B61-4 bombs will be returned to the United States. The B61-12 will use the nuclear explosive package of the B61-4, which has a maximum yield of approximately 50 kilotons and several lower-yield options, but it will be equipped with a guided tail kit to increase accuracy and standoff capability, which will allow strike planners to select lower yields for existing targets to reduce collateral damage. The increased accuracy will give the tactical bombs in Europe the same military capability as strategic bombs in the United States. Although the B61-12 has not been designed as a designated earth-penetrator, it does appear to have some limited earth-penetration capability, which increases its ability to hold at risk underground targets (Kristensen and Matthew 2016).

An F-35A carries out a test drop of a B61-12 guided nuclear bomb over Nevada in August 2020. The B61-12 will replace all US strategic and tactical nuclear gravity bombs and also be supplied to NATO allies. (Image: US National Nuclear Security Administration).

In March 2020, the F-15E became the first aircraft to be certified to operate the B61-12, after completing the last in a series of six compatibility tests at Nellis Air Force Base and the Tonopah Test Range (Baker 2020). In addition to the F-15E, integration of the B61-12 on B-2, F-16, and PA-200 aircraft is well under way, and the F-35A—with its incoming Block 4 software patch— is expected to become nuclear-certified with the B61-12 in 2024–2026. The Block 4 software will be patched into existing F-35As in six-month increments, starting in 2023 (Roblin 2019).

NATO is life-extending the Weapons Storage Security System––which involves upgrading command and control, as well as security––at the six active bases (Aviano, Büchel, Ghedi, Kleine Brogel, Incirlik, and Volkel) and one training base (Ramstein).

In addition to the modernization of weapons, aircraft, and bases, NATO also appears to be increasing the profile of the dual-capable aircraft posture. In October 2020, for example, at the start of the Steadfast Noon nuclear deterrence exercise, NATO Secretary General Jens Stoltenberg visited Volkel Air Base in the Netherlands. Stoltenberg said that the exercise, which included over 50 aircraft, was “an important test for the Alliance’s nuclear deterrent” (NATO 2020b). Likewise, in June 2020, the 31st Fighter Wing at Aviano Air Base conducted the first “Elephant Walk” ever to display all aircraft in a single visual show of force of its capability to “deter and defeat any adversary who threatens U.S. or NATO interests” (US Air Force 2020d).

Having reached 50 ratifications in October 2020, the Treaty on the Prohibition of Nuclear Weapons (TPNW) will officially enter into force on January 22, 2021. It is unclear whether the treaty will have an effect on the status of NATO’s nuclear posture––and specifically the forward-deployment of US nuclear weapons on European NATO territory––however, public opinion in Belgium, Germany, Italy, and the Netherlands is firmly opposed to hosting US nuclear weapons (International Campaign to Abolish Nuclear Weapons 2018). To that end, some host country parliaments have already taken actions that challenge the future of US nuclear weapons on their soil; in January 2020, a motion to “draw up, as soon as possible, a roadmap aiming at the withdrawal of nuclear weapons on Belgian territory” was narrowly defeated 74–66 in the Belgian parliament (Galindo 2020). It is possible that the entry-into-force of the TPNW could prompt similar resolutions to be debated and voted upon in other nuclear hosting nations, which explains why the United States tried in vain to persuade other countries to withdraw their ratifications, only a week before the TPNW reached 50 ratifications (Lederer 2020).

The 2018 Nuclear Posture Review has recommended rapid development of a nuclear nonstrategic submarine-launched cruise missile to recreate a capability to deploy such a weapon in support of NATO (and Pacific) allies. A previous cruise missile was retired in 2011. The new weapon would likely be intended for deployment on attack submarines. It is doubtful that the incoming Biden administration will continue the project.

Antichrist’s protests turn deadly in Iraq, again

Violent protests turn deadly in Iraq, again

NASIRIYAH, IRAQ–A policeman was killed Sunday in Iraq, the army said, as security forces fired to disperse a third consecutive day of protests in the city of Nasiriyah, according to medics.

The policeman was “killed by a bullet to the head,” a medic in the city 300 kilometres south of the capital Baghdad said.

The army confirmed the death.

“Thirty-three other policemen were wounded in the events of the day,” the military added, without elaborating.

Medical sources said several protesters were wounded.

Witnesses said security forces opened fire to disperse demonstrators — including some throwing stones — from a city square that served as an epicentre of a widespread protest movement that began in October 2019.

Reoccupying Habbubi Square

A sprawl of tents in Habbubi Square had remained in place until November 2020, when eight people were killed in clashes between anti-government protesters and followers of the Shia leader Moqtada al-Sadr.

Anti-government protesters reoccupied the square on Friday, demanding the release of peers who have been arrested in recent weeks.

Security forces repeatedly fired in the air and launched smoke grenades towards the protesters, whose movement for the first time penetrated other parts of the city.

A spokesman for the protesters said that 13 demonstrators who had been arrested were released, adding that authorities had promised other detainees would be released the next day.

Vicious circle

Iraq’s protests fizzled out last year due to the COVID-19 pandemic and a crackdown that left nearly 600 dead and 30,000 wounded.

However, kidnappings, targeted killings and arrests of protest leaders have continued.

Alongside demanding an end to political corruption, protesters want jobs and improved public services.

But the state’s ability to finance these demands is hamstrung by an economic crisis, including a yawning fiscal deficit.

Iraq, which relies on oil sales to finance more than 90% of its budget, is set to see its economy shrink by 11% this year, while poverty doubles to 40% of the country’s 40 million residents, according to International Monetary Fund (IMF) estimates.

The Hypocrisy of American Free Speech

Following Trump ban, Iranian dissident calls on Twitter to ban Khamenei

Following Twitter banning U.S. President Donald Trump from its platform, an Iranian dissident journalist has called on the social-media company to do the same to Iran’s Supreme Leader Ayatollah Ali Khamenei.

In a statement to The Jerusalem Post, Masih Alinejad, a women’s rights activist and founder of the My Stealthy Freedom/White Wednesday campaign, said that “a close review of these accounts in multiple languages, which include Persian, English, Spanish and Arabic, shows that Khamenei has repeatedly violated Twitter rules. Even today, @Khamenei_ir account announced a ban on COVID-19 vaccines from the US and the European companies and blamed the French for giving Iran blood tainted with HIV virus.”

In a Twitter thread on Friday, Alinejad posted, “Now it’s time for @Twitter to remove the man who has banned 83 million Iranians from Twitter, bans US & European coronavirus vaccines and ordered the crackdown that killed 1,500 protesters. Remove @Khamenei_fa now.”

She also posted, “You’ve suspended the account of @realDonaldTrump, but you’ve not suspended the account of @khamenei_ir, who used the @Twitter platform to issue death threats. He’s imprisoned various twitter activists while banning Iranians from freely accessing Twitter. Why?”

Twitter announced on Jan. 8  that it has permanently suspended Trump from its platform following the mob invasion of the U.S. Capitol on Jan. 6 as Congress was tallying U.S. President-elect Joe Biden’s Electoral College victory (it eventually did so after the violence was quelled).

Critics blamed Trump’s rhetoric for inciting the riot, which led to five deaths, including that of U.S. Capitol police officer Brian Sicknick.

Hamas’ Maneuvers Outside the Temple Walls Are Defensive — for Now: Revelation 11

Hamas’ Maneuvers Are Defensive — for Now

Palestinian police officers loyal to Hamas march during a graduation ceremony in Gaza City, April 29, 2019. Photo: Reuters / Ibraheem Abu Mustafa.

The recent military exercise in Gaza by a joint command composed of 12 terrorist organizations, led and authorized by Hamas, lays bare the fallacy that Gaza can be pacified in the long term through economic engagement and payoffs — principally the distribution of Qatari money, but other forms of international aid as well.

A strategy based on payoffs and appeasement does not address the problem of enhanced capabilities. All the money and resources coming in are fungible: aid meant to help Hamas fight the battle against COVID-19, for example, ultimately helps the group focus its resources toward digging in and striking out against Israel. A strategy along these lines also allows more imports into Gaza, which Hamas then taxes, providing further resources with which to continue to build up its military.

The policy of appeasement and “economic peace” is occasionally rationalized by a need to “win Gazan hearts and minds.” The argument is this: the more Israel is willing to accede to Hamas’ demands, which entail outright subsidizing of the enemy in terms of free electricity and health care, including for Hamas family members, the less willing Gazans will be to engage in hostile activities against Israel.

This is a ridiculous argument. Both the civil and military wings of Hamas are staffed by dedicated, full-time professionals whose ultimate aim is the complete destruction of Israel. This is even more true of Islamic Jihad, the civilian wing of which is completely subservient to the military wing.

These people will not be appeased by Marie Antoinette-style offers of cake and will only marginally take into account the needs of the Gaza public, whose affection the organizations lost long ago.

There is no better proof of Hamas’ disregard for local public opinion than the scheduling of the joint exercise. The timing, dictated by Iran, was at a moment when the public was suffering a vast increase in deaths, restrictions, and economic hardship due to the coronavirus pandemic — a crisis that required that resources be expended on social welfare, not missiles.

Hopefully, the IDF’s learning curve is greater than the advance in the capabilities of Hamas and Islamic Jihad. Surely, one of the aims of both organizations (and others) is to improve their drone capabilities, a technology that played a major role in the recent victory of Azerbaijan over the Armenian forces, as BESA scholar Dr. Uzi Rubin noted in a recent analysis of that war.

What is clear, judging from the content of the Hamas-orchestrated media blitz surrounding the exercise, is that for now, the group wants to maintain calm vis-à-vis Israel while improving its capabilities.

It signaled this intention, without spelling it out, by repeatedly emphasizing that the exercise and the enhanced capabilities displayed therein were defensive and intended to deter Israel. Hamas is not projecting a desire to rush to engage the IDF.

The defensive nature of the exercise was spelled out in the headline of the news report on the al-Quds media site: “The Maneuvers Begin…the Resistance to the Occupation: Any Military Adventure will be Confronted in Full Force and Accompanied by Many Surprises.” According to that headline, which was undoubtedly written in consultation with Hamas, the “resistance” will respond to an Israeli military action rather than initiate a clash with Israel. Hamas does not promise victory but rather a forceful deterrent response.

Content from the subsequent communiqué issued by the spokesman of the “Joint Operations Headquarters” confirmed the intention to keep the peace: “The leadership of the resistance is prepared to engage in any campaign to defend our people and land. … [We are] united in our resolve to [respond to] any confrontation imposed on us at any place or time.”

Though the timing of the maneuvers seems to indicate Iranian influence, the messages the Hamas media put out were limited to defending “our people and land.” Notable by its absence was any reference to the possibility that Hamas or Islamic Jihad would act if the Trump administration decided to strike Iran.

To allay fears among the Hamas rank and file that this defensive posture will displace long-term goals, the same communiqué made sure to repeat the organization’s ultimate objective: the “liberation” of “Palestine.”

Nobel laureate Daniel Khaneman and his long-time collaborator Amos Tversky, as well as many other social psychologists and behavioral economists, have demonstrated over and over again that human beings are subject to the fallacy of excessive irrational and unaccountable optimism.

That fallacy was at the root of the intelligence failure in the first days of the Yom Kippur War. The signs were all there to read the road map correctly. The problem was in the interpretation of those signs and the fallacy of excessive optimism, which assumed Israel’s leaders would get it right.

The Israeli military is repeating this mistake in thinking economic benefits to Gaza are going to pacify Hamas. They are disregarding the signs that Hamas and Islamic Jihad are buying time to build up their capabilities.

Economic pacification is an illusion if not a delusion. The basis for this belief is the Marshall Plan, but it only worked after Nazi Germany had been completely defeated and when the western European states, most of all West Germany, faced the Soviet menace.

Sooner or later, Hamas, Islamic Jihad, and the other organizations will have to be militarily defeated. No amount of wishful thinking will dispel the threat they pose to Israel’s security.

Prof. Hillel Frisch is a professor of political studies and Middle East studies at Bar-Ilan University and a senior research associate at the Begin-Sadat Center for Strategic Studies.

Emergence of the Beast with Four Horns: Daniel 8

Emergence of a new bloc

Jai Kumar DhiraniJanuary 11, 2021

The world is transforming at a very fast pace. New alliances and partnerships are being established to serve respective national interests. The era of an interdependent world, joint development, common prosperity and win-win cooperation is on the rise.

In this scenario, a new alliance could be built between three powerful Muslim nations, Turkey, Iran and Pakistan, along with two Eastern giants namely China and Russia. The evidence of this bloc is trilateral cooperation in the form of the Istanbul, Tehran and Islamabad (ITI) Train project which is going to be multilateral soon, with the inclusion of China and Russia.

The said project was launched in 2009 under the Economic Cooperation Organisation (ECO)—a 10-member Asian trade bloc. However, the rail route has so far only been used for test journeys. But in the 10th meeting of ECO Transport and Communications Ministers Meeting which was held in Istanbul, it was confirmed by the Turkish Transport Minister, Adil Karaismailoğlu that the decision has been taken mutually to resume regular operations soon.

The railway line intends to greatly reduce the transit route of the goods from Istanbul to Islamabad. A journey of 6500-km (Pakistan: 1990 km, Iran: 2600 km & Turkey: 1950 km) on the tracks takes eleven and a half days to complete and a train can have 20 containers—of 40 feet each—attached to it. In comparison to the traditional seaway, transporting goods from European countries to Pakistan took almost 45 days. The route has also caught the attention of the United Nations and has been recognised as an international corridor between the three countries.

It will boost the trade volume of these countries. As the contemporary bilateral trade between Pakistan and Iran stood at USD293.18 million; the volume of Pakistan’s export to Iran is USD32.29 and Pakistan’s import from Iran is USD260.89 million. Whereas, the ongoing trade between Turkey and Pakistan is approximately USD804 million; with the volume of Pakistan exports to Turkey, USD295.73 Million. The completion of this project would give Pakistan a leverage to curb its trade deficit with these countries and boost its exports by encouraging small and medium enterprises (SMEs). In addition to it, the project would not only tremendously benefit these three countries but other countries like Afghanistan, Azerbaijan, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan as well.

It is expected that these three countries would expand their ITI train service by enhancing cooperation with China’s grand project, namely the Belt and Road Initiative (BRI). As Nikkei Asia quoted, according to a Pakistani government official, the ITI railroad will connect to China’s Xinjiang Uyghur Autonomous Region through Pakistan’s ML-1 railway line. It is believed that China would not lose an opportunity to benefit from this project by only relying on the revival of its ancient silk route. It is not wrong to say that Russia could join it too in the nearby future to get the opportunity to access warm water to boost its trade to the Middle-Eastern and African market.

After the global financial crisis of 2008, China emerged as a rising power. It paved the way for the strengthening of China and Russia cooperation. In 2016, the bilateral partnership transformed to trilateral partnership between China, Pakistan and Russia. In the years later, the trilateral partnership included several other states—Turkey and Iran. Organisations such as Economic Cooperation Organisation (ECO) and the Shanghai Cooperation Organisation (SCO) are becoming crucial as they are playing a pivotal role in promoting multilateralism and increased engagement in terms of economic and security in the region.

The alliance would be a great disaster for the US policy in the Middle East and Asia, as the countries of the emerging bloc have their own uniqueness. For instance, Iran has strategic and security influence in the Middle East, with natural resources, ancient civilisation and cultures that are a glorious part of world civilisation. Central Asian countries have religious and cultural ties with Iran—and Iran has emerged as a regional power. Despite various economic blockades and attacks by COVID, Iran not only has strong military power but it is selling a large quantity of oil to several countries, including Japan and China.

China’s economic progress, its veto power in the United Nations and global influence has almost achieved parity with the United States. The process of integrating economic development with the rest of the world has made the country one of the world’s superpowers.

Pakistan is a Muslim country with nuclear power but a strong enough military as well. Therefore, Pakistan has a special value in the Muslim world. Pakistan is a regional hub for the economy and defence due to its significant geographical location. China is the centre of Iran and Pakistan is the centre of this tri-power.

Turkey, in recent years, has emerged with a powerful military, economy and a regional economic hub due to its connectivity of Eurasia through the Bosphorus as well as gaining strong hold in the Muslim world, as it looks to be confronting Saudi Arabia for the title of the leadership of Muslim world.

Russia, with veto power in the UNSC and a strong military, along with the label of a nuclear weapon state, is gaining utmost influence in almost all corners of the world. Its strength is undeniable.

This alliance would help Pakistan to gain the utmost economic benefits from the emerging eastern giants as well as energy-rich Muslim countries to quench the thirst of its energy and economic needs. This is the time to move its bishops and knights perfectly.

Jai Kumar Dhirani